

EPA Region 9 Virtual Conference
Nov. 17 – 19, 2020

Project Deliverables

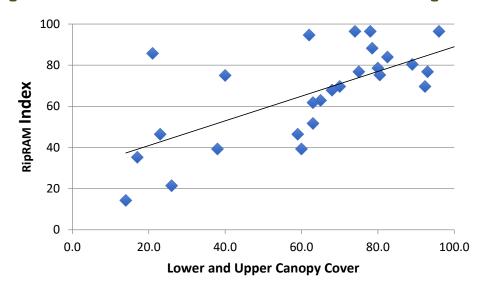
- Establishment Riparian Technical Advisory Committee
- Validate Riparian Rapid Assessment Method (RipRAM) (n=40)
 - online data repository
- California State agency staff (and others) trained in RipRAM
- Watershed assessment framework integrating multiple data layers on "health" and "vulnerability" to produce assessment of management needs
- Map 4-6 priority watersheds showing quantifiable protection and management goals (including field verification) (RipRAM n=60)
- Upload riparian protection and management goals to EcoAtlas.org

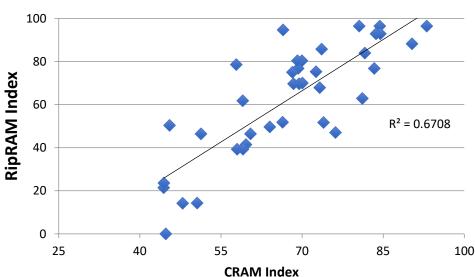
Riparian Rapid Assessment Method Validation n=40

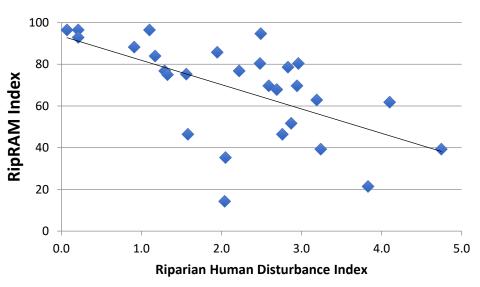
Process to Develop a Riparian Condition Assessment Tool

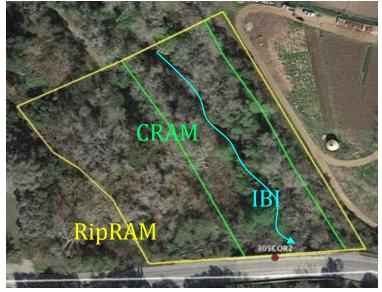
- 1. Define levels of access (direct, bridge/road)
- 2. Evaluate available assessment tools
- 3. Select a set of appropriate assessment tools
- 4. Test efficacy of tools for different access
- 5. Develop new RAM based on tested metrics
- 6. Compare new RAM to CCAMP sites on Central Coast
- 7. Validate RipRAM at sites around California n=40
- 8. Use tool to inform management decisions

Riparian Functions Included in RipRAM Development


- Tree Shading (water cooling/microclimate control)
- Structural Shading in Stream
- Large Wood Input to Stream
- Leaf Litter Input to Stream
- Bank/Channel Stabilization
- Biodiversity and Vegetation Species Complexity
- Habitat/Riparian Wildlife Support
- Stream/Wildlife Corridors & Habitat Connectivity
- Human Benefits: Recreation
- Human Benefits: Water Quality (nutrient and sediment capture)
- Human Benefits: Flood Attenuation




FINAL Riparian RAM Metrics


Metric 1:	Total Riparian Cover
Metric 2:	Vegetation Cover Structure
Metric 3:	Vegetation Cover Quality
Metric 4:	Age Diversity and Natural Regeneration
Metric 5:	Riparian Vegetation Width
Metric 6:	Riparian Substratum Condition and Vertical Connectivity
Metric 7:	Macroinvertebrate Habitat Patch Richness
Metric 8:	Anthropogenic Alterations to Channel Morphology

RipRAM Score Comparison to other measures

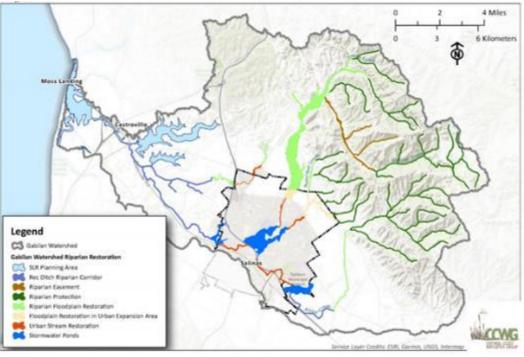
Level 3 data: Bugs, Algae, Water Quality, Birds

- Perennial Stream Assessment/Reference Condition Monitoring Program/ Stormwater Monitoring Coalition
 - California Stream Condition Index (CSCI) standardized measure of condition based on bugs and algae
 - PHAB data
- Monitoring Avian Productivity and Survivorship (MAPS)

Benefits

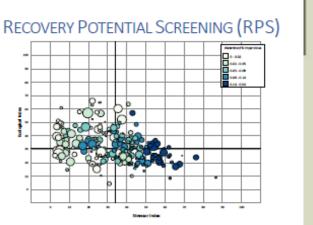
- Multiple trophic levels
- Site-specific
- Recent data from 2014-2017 available
- State Wide

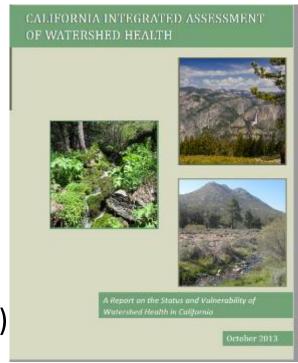
Tool Development Next Steps – 2020-2022


- Complete fieldwork this fall and next spring
- Assemble L3 data
- Complete validation analysis (L2~L3)
- Finalize the RipRAM field book
- SFEI to build an online data repository (EcoAtlas.org)
- Develop training program

Watershed Scale Riparian Management Prioritization Tool

<u>Develop</u> and <u>demonstrate</u> a tool to prioritize restoration and management actions within individual watersheds

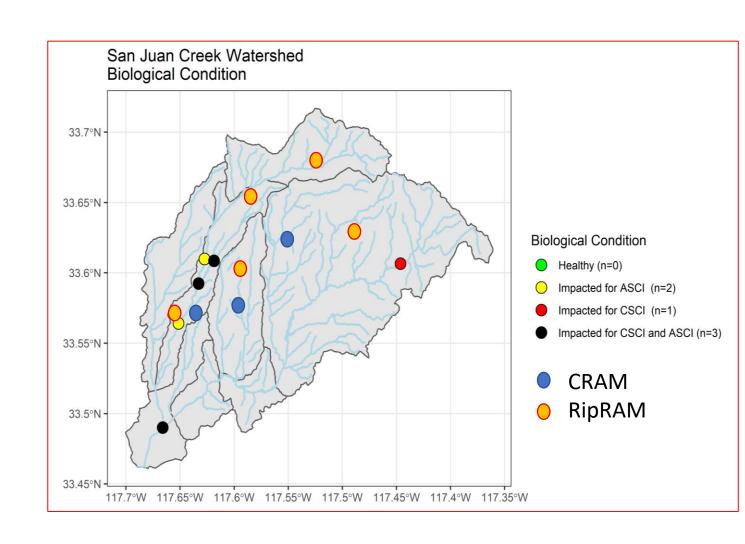



Review of Other Watershed Prioritization Methods

Most methods reviewed provided useful elements that informed our

development of the Watershed Prioritization Tool

- Indicators (CA HWI)
- Structure of assessment tools (DSL)
- General approach (RPS)
- None provided all desired elements
 - Correct scale (stream reach)
 - Balanced set of indicators (condition, stress, vulnerability, etc.)
 - Fully compatible with data sets and indices available in CA



Watershed Prioritization Process

- 1. Rate overall condition of reaches using Stream Quality Index approach(H,M,L)
 - RANDOM FOREST APPROACH using existing data inputs CSCI, ASCI, CRAM & RipRAM
- 2. Map stressors for each reach to prioritize management actions
 - Use StreamCat datasets
- 3. Rank sites based on severity of stressors & map opportunities
- 4. Prioritize sites based on combination of stressor, condition & opportunities
- 5. Consider social equity implications of management prioritization

Overall Condition Assessment

- Use Biological Condition components of SQI
 - H, M_{CSCI}, M_{ASCI}, L
- Integrate Habitat Condition
 - CRAM & RipRAM
- Extrapolate condition scores across stream network
 - Random Forest Model
 - Using StreamCAT Data (600 variables)

Stressor Evaluation

- Build off of the EPA Index of Watershed Integrity (IWI)
- Utilize the StreamCAT
 Disturbance Variables for an
 IWI approach
- Verify model outputs with field habitat condition assessments (CRAM/RipRAM n=5)

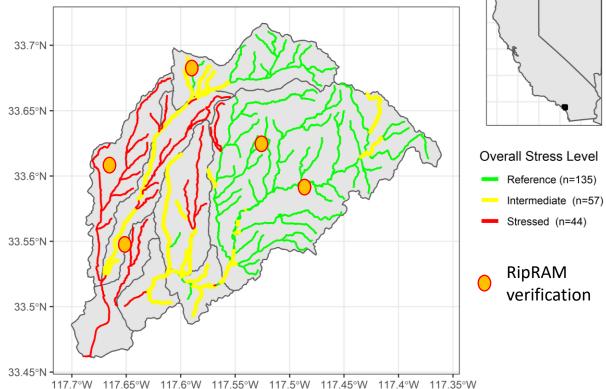
EPA Public Access

Author manuscript

Sci Total Environ. Author manuscript; available in PMC 2020 February 15.

About author manuscripts

Submit a manuscript


Published in final edited form as:

Sci Total Environ. 2019 February 15; 651(Pt 2): 2615-2630. doi:10.1016/j.scitotenv.2018.10.112.

Revising the index of watershed integrity national maps

Zachary C. Johnson^{a,*,†}, Scott G. Leibowitz^b, and Ryan A. Hill^a

San Juan Creek Watershed Most sensitive stress category

Relating Stressors to Management Actions & Ranking Severity of Stress

- High quality sites get evaluated for preservation or management
- Lower quality sites get evaluated for restoration and management
- Rate the severity of stress specific to each management action
 - Number of stressors vs.
 Severity of stressors

Protection

Riparian zone protection

Buffer protection/easement

Catchment preservation (sed. Supply)

Restoration

Physical rehabilitation of stream channel/floodplain Revegtation of riparian zone/invasive control

Revegtation of buffer

Upland catchment revegetation

Management

Runoff or flow management

Sediment management

Water quality management

General Approach

	POTENTIAL ACTIONS		ON (SQI)	VULNERABILITY/STRESS									OPPORTUNITY				
									RAINFALL				PROXIMITY TO			EXISTING	
				WATER	PHAB	CRAM	LU OR LU		CHANGE	GRAZING OR	DAMS AND	EXISTING	PROTECTED	CRITICAL	FLOODPLAIN	MGMT	
		CSCI	ASCI	CHEM	METRICS	METRICS	CHANGE	FIRE RISK	(GCM)	AG USE	DISCHARGES	PROTECTION	AREAS	LINKAGE	ACCESS	PLANS	
	Protection																
1	Riparian zone protection	Χ	Χ		Χ	Χ	Χ		Χ			Χ		Χ	Χ	Χ	
2	Buffer protection/easement	Χ	Χ	Χ			Χ		Χ	Χ		Χ	Χ		Χ	Χ	
3	Catchement preservation (sed. Supply)	Χ	Χ	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ			Χ	
	Restoration																
4	Physical rehabilitation of stream channel/floodplain	Χ	Χ		Χ	Χ	Χ			Χ	Χ			Χ	Χ	Χ	
5	Revegtation of riparian zone/invasive control	Χ	Χ			Χ	Χ			Χ		Χ	Χ		Χ	Χ	
6	Revegtation of buffer	Χ	Χ	Χ		Χ	Χ	Χ		Χ		Χ			Χ	Χ	
7	Upland catchment revegetation	Χ	Χ				Χ			Χ		Χ	Χ	Χ		Χ	
	Management																
8	Runoff or flow management	Χ	Χ	Χ	Χ	Χ	Χ		Χ		Χ			Χ	Χ	Χ	
9	Sediment management	Χ	Χ		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ			Χ	Χ	
10	Water quality management	Χ	Χ	Χ			Χ			Χ	Х			Χ	Χ	X	

Assess vulnerability/stress using readily available data

Prioritize Actions Based on Opportunities

- Select preferred management action based on condition + stress evaluation
- Map opportunities
 - Weight based on existing, in-progress, or planned
- Iteratively assess management relative to opportunities
- Locations are prioritized based on opportunities
- Account for spatial relationships
 - Prioritize based on spatial prevalence or aggregation
 - Account for critical breakpoints, barriers, or opportunities
- Develop an algorithm to account for all these issues
 - Test sensitivity and discriminatory power → refine

Thank you

- Ross Clark
- Email: rclark@mlml.calstate.edu
- Website: www.centralcoastwetlands.org

