- Development of next
. generation molecular

stream ecosystem
function

Susie Theroux, PhD
susannat@sccwrp.org

- -
Estap)ished 19



Traditional bioassessment and biomonitoring

Bioassessment allows for the direct
measure of resident biota to understand
biological health

Typically relies on fish, algae, or benthic
macroinvertebrates (BMI)

Calculate biological indices to determine
biological integrity and impacts of
stressors

More taxa == multiple lines of evidence




Biological indices

* Biological indices are sensitive
tools that reflect species’
responses to perturbations
Integrated over time

* In California, we have two main
Indices for streams
e California Stream Condition Index
(CSCI) for BMI

* Algal Stream Condition Index
(ASCI) for algae

 However, indices alone do not tell
us about biotic interactions and
how these are impacted by stress
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Exploring multitrophic networks

 Multitrophic networks allow us
to better understand ecosystem
health

» Food web support is a critical
component of a healthy ecosystem

By looking across multiple trophic
levels we get a more holistic
understanding of how the
ecosystem is functioning

» May also help us understand how
stressors ripple through a
community
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Bruder et al., 2019



Our approach

* Build capacity to assess i
multitrophic networks 5
1. ldentify species
2. Quantify species
Interactions
3. Develop novel index that
leverages multitrophic
networks to assess
ecosystem health
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Bruder et al., 2019



Step 1. Identify species

Environmental
sample

Microscopy

)f  Limited spatial and

. j* ter_nporal resolutior_l
« Miss key taxonomic groups

 Costly and long data
< turnaround times



Step 1. Identify species with DNA

Environmental
sample

9 DNA
~« Expand the taxonomic

< | groups that we can
R monitor

é « Potential to be faster,

D

cheaper, and more accurate



Environmental
sample

Amplify DNA
barcode regions
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Step 1. Identify species with DNA
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Step 1. Identify DNA barcodes to target

16S rRNA genes 18S rRNA genes
Universal bacteria/archaea Universal eukaryote




Results: High variability in DNA barcode performance

morpho
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Results: High variability in DNA barcode performance

Cyanobacteria

Diatoms

Soft-bodied algae

Species
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Lack of DNA reference sequences limiting index performance
with DNA-based taxonomy



Results: High variability in DNA barcode performance

« Universal DNA barcode primers allowed for
the identification of multiple taxonomic
groups at one time

* DNA-based taxonomy resulted in orders of
magnitude more taxa being identified, Stressor
although many taxa still lack DNA reference
seqguences

* Improvements in DNA reference libraries
will aid in biological index calculations

 Assigning trait attributes to novel sequences
with “taxonomy-free” approaches will help
circumvent this limitation

Species 2
Species 1

Abundance
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Pawlowski et al., 2018



Step 2. Quantify species Interactions

 Use a co-occurrence network [~ mgzzeea
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Step 2. Quantify species Interactions

Identify network characteristics (topologies™) that respond to stressor gradients

Shortest
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Step 2. Quantify species Interactions

« Built co-occurrence networks
using 10+ years of BMI
monitoring data (> 4000 samples)

o Observed co-occurrences were
compared against 100 randomized
null communities with the same
taxonomic richness as the
observed community

« ldentified statistically significant
correlations

« Calculate topological measures

(O Reference
@ Impacted




Results: Co-occurrence networks

« Size of co-occurrence networks declined Degree heterogeneity

with land use
« Both number of genera and number of Low High | © P
functional feeding groups declined - Pt ¥
« Connectance, degree heterogeneity, and N f»'j};,i-J f‘g;c
mean co-occurrence strength increased with 8o
stress | v
« May indicate preferential loss of weak More edges per node (right) may make

networks more resilient to stress

CO-0OCcurrences



Results: Co-occurrence networks

« Alinear model composed of
topological measures could describe a
significant portion (~66%) of the
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Results: Co-occurrence networks
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Results: Co-occurrence networks

 Co-occurrence networks have
demonstrated utility as a potential
biological indicator

 \We can assess biotic interactions
previously ignored by traditional
biomonitoring approaches

 Use of molecular methods will help
us to expand the taxonomic groups
we can assess, and will be more
sensitive than traditional approaches



Step 3: Develop an index

« Combine Steps 1 & 2: build co-
occurrence networks using DNA-
based taxonomy

] \
» Analyze DNA samples from > 400 I 1
sites across California |‘ \‘
* Reference sites (> 50) will help us to \ < \
calibrate our index S @\ \
* Build co-occurrence networks for So
bacteria, archaea, algae, BMI, fish

* Assess network characteristics and
responses to stressor gradients




Step 3: Develop an index

°
o ® .
Better data Better decisions Better
0 outcomes
‘eco0*

Interested in this project?
Please email me to get involved!




Thank you!
susannat@sccwrp.org

"1 California Water Quality Monitoring Council
ﬁ My Water Quality
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Portals About Us Workgroups

California Water Quality Monitoring Council (CA Senate Bill
1070)

* New! Molecular Methods Workgroup

https://mywaterquality.ca.gov/monitoring council/mmw.html
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