Mapping a Path to Wetland Functions: Leveraging NHD and LLWW to Enhance the National Wetland Inventory

An Automated LLWW Model to **Predict Wetland Function**

Sara Owen **Ecological Mapping, Monitoring & Analysis group** O'Connor Center for the Rocky Mountain West **University of Montana** MONTAN **December 8, 2020**

UNIVERSITY OF

Overview

PABGN

PEMIL

PUBCh OFRTH EMIGh SBAVR

1. What is LLWW? Why use it?

2. How is LLWW derived from NWI & ancillary data?

3. Automated model – results in Colorado

4. Example of how to use model outputs

Earl, HERE, Garmin, (c) OpenSitreetMap contributors, and the GIS user community. Copyright © 2013 National Geogr cubed

Wetland Classification Systems

based on Aquatic ecosystem Substrate Vegetation Water regime Landscape **Plant communities Ecological system Function**

ETLAND. of the UNITED STATES

~ Por

THEIR EXTENT AND THEIR VALUE TO WATERFOWL AND OTHER WILDLIFE By Samini P. She'v and C. Gordon Frederic Moral Rive Datis Statis

__des Ams and Riparian Systems

Rocky Mountain Subalpine-Montane Fen Provisional State Rank: S4

Depressional Wetland

4 or Fen

Great Plains Closed Depressional Wetland Western Great Plains Closed Depressional Wetland Provisional State Rank: \$3

Great Plains Open Freshwater Depression Wetland Western Great Plains Open Freshwater Depression Wetland

to the

Wetland and Riparia. **Plant Associations**

What is	LLWW*?		Í,	PEM1B TESLOU PEM1C LOFPTH PEM1C LOFPTH
Landscape position Lentic (LE) Terrene (TE)	: Lotic (LO)		PEM1B TESLIN	PEMIC PEMIC PEMIC PEMIC PEMIC PEMIC PUSA PEMIC PUSA PEMIC PUSA
Landform:			PEMICh TEBAOH	
Basin (BA) Slope (SL) Eloodplain (EP)	Fringe (FR) Flat (FL)		PEMICH	
Waterbody type:				
River (RV)	Lake (LK)			V P
Stream (ST)	Pond (PD))))		
Waterflow path: Inflow (IN) Vertical flow (VR) Throughflow-Bidire Bidirectional (BI)	Outflow (OU) Throughflow (TH) ctional (TB)	RASBAT	L1UBHh LOLKTB	PEMIFH
*Keys to LLWW for Inland Wetle States	ands of the Western United	Pusc	Sh Br	R458A LOST3TH

PEMIC PEMIC

PEM1A LOFPTH

Why use LLWW?

Automated LLWW model for Western U.S.

- 2017 EPA WPDG: U of M developed model for Montana's statewide wetland mapping layer
- Keys to LLWW for Inland Wetlands of the Western United States: 2018
 - updated model in 2019-2020
- Working with Saint Mary's University to combine models into one
 - Consistent LLWW attribution & product

How do you derive LLWW from NWI?

Model inputs:

Data production:

1. NWI

2. LLWW modifiers—manual assignment

Data downloads:

3. National Hydrography Dataset (NHD)

Derivatives:

- Lake basins polygons
 100-year floodplain map (EPA & SSURGO soils query)
- 6. Slope raster
- 7. Topographic Position Index (TPI)
- 8. Headwaters binary raster

Application of LLWW modifiers

Manual	Notes	Semi-Automate	Note	es Automate	Notes	Possible Automation	Notes	
aq: aquaculture		ag: agricultural		ar: artificial flow	(al: alpine		
ay: arroyo		ch: channelized		bv: beaver		au: augmented flow		
ds: discharge to stream🗡 👘				dr: partially drained		ba: burn area		
fm: floating mat	+			ex: excavated		bg: bog	Α	
go: golf course				fn: fen bk: beetle killed forest				
gr: gravel				fs: flashy gl: glacial				
gz: grazed				gf: geomorphic floodplain		id: interdunal		
hf: hayfield				gw: groundwater-driven		ir: irrigation-influenced 🕇	•	
hs: hot spring				hw: headwater		kt: kettle		
hy: hydropower				il: island		lg: logged		
ld: lock & dammed				im: impounded		ml: mineral		
mn: mining				it: temporary-intermittent flow		pf: permafrost	Α	
mr: mire				pd: pond fringe		pl: playa		
ox: oxbow★				rn: rainfall		sa: saline		
pp: prairie pothole						sf: spring fed 🗮		
re: restoration site						sv: stream valley		
rf: regulated flow						ts: toe-of-slope	/	
rr: run of river dammed				These	modi	fiors hospily influence the	model	
sl: seepage lake					emour	hers heaving influence the	mouer	
sn: snowmelt		Notes:						
sr: snow + rain		#: Not to be applied via photo interpretation						
sw: stormwater		A : Limited to Alaska; automation will require ancillary GIS layers						
wm: wildlife management)	O: Explore options for selecting 'ag' / 'hf' adjacent to R4%x						
ww: wastewater		Likely to be the most commonly encountered modifiers that need manual attribution						

How do you derive LLWW from NWI?

Model inputs:

Data production

- 1. NW
- 2. LLWW modifiers—manual assignment

Data downloads:

3. National Hydrography Dataset (NHD)

Derivatives:

- 4. Lake basins polygons
- 5. 100-year floodplain map (EPA & SSURGO soils query)
- 6. Slope raster
- 7. Topographic Position Index (TPI)
- 8. Headwaters binary raster

Automated LLWW model for Western U.S.

LLWW model results in Colorado

156 1:24,000 USGS quads

100,041 total polygons:

- 17,932 Rp
- 59,709 LO
- 22,104 TE
- 296 LE

PA 1: 55 1:24,000 USGS quads

34,178 total polygons:

- **7,686 Rp**
- 20,288 LO
- 6,185 TE
- 19 LE

Frequency of LLWW codes in Colorado BLM PA 1

CODE	FREQUENCY	CODE	FREQUENCY	CODE	FREQUENCY
LOFPTH	7058	TESLOU	1585	LEFRTB	5
LOST4TH	4429	TEPDVR	1331	LEFPBI	4
LOFRTH	2694	TEBAVR	1325	LEPDTH	3
LOBATH	1828	TESLVR	993	LEFRBI	3
LOPDTH	1643	TEPDOU	437	LEFPTB	3
LOST3TH	1066	TESLTH	226	LEBAVR	1
LOST5TH	520	TEBAOU	173		
LOST2TH	399	TESLIN	42		
LOBAVR	323	TEFRVR	34		
LOPDVR	125	TEPDIN	23		
LOST1TH	93	TEBATH	7		
LORV1TH	71	TEVR			II
LOLKTB	5	TELKIN	2		
LOST1BATH		TEPDTH	1		电 带
LORV5TH	3				
LOST2BATH				E B B	HTL.
LOFRVR	2				田
LOLKIN	1			1 -	

LLWW model Quality Control

LLWW Category	LLWW Codes	Flagged Features*/ Reviewed Features	Total Features	Percent Accuracy	Percent of Features Reviewed
Landscape Position - Pond	LEPD / LOPD / TEPD	50/264	3563	81.1%	7.4%
Landscape Positon - Lake	LELK / LOLK / TELK	1/8	8	87.5%	100.0%
Flow Path - Pond	PDIN / PDOU / PDTH / PDVR / PDBI / PDTB	42/351	3563	88.0%	9.9%
Flow Path - Lake	LKIN / LKOU / LKTH / LKVR / LKBI / LKTB	3/8	8	62.5%	100.0%
Landform - Lotic (Non-Riverine)	LOBA / LOSL / LOFR / LOFP / LOFL	11/214	11832	94.9%	1.8%
Landform - Lentic	LEBA / LESL / LEFR / LEFP / LEFL	0/15	18	100.0%	88.3% (Note: 3 Lentic Ponds not reviewed)
Landform - Terrene	TEBA / TESL / TEFR / TEFP / TEFL	27/454	6324	94.1%	7.2%
Flow Path - Lotic (Non-Riverine)	LOIN / LOOU / LOTH / LOVR / LOBI / LOTB	23/141	11832	83.7%	1.2%
Flow Path - Lentic	LEIN / LEOU / LETH / LEVR / LEBI / LETB	1/18	18	94.4%	100.0%
Flow Path - Terrene	TEIN / TEOU / TETH / TEVR / TEBI / TETB	35/540	6324	93.5%	8.5%

* Flagged Features = flagged during QC: needed further review for accuracy

What works?

- Landscape position
- Waterbodies
- Lotic floodplain
- Lotic fringe
- Isolated terrene basin features

What needs more work?

- If manual attribution of modifiers is inaccurate / conflicting
- Lotic and lentic basins are challenging
 - Limited LiDAR coverage in Western U.S. (5-10m DEM)
- Can't split NWI polygons with same attribute (ex. stream networks, regulated flow)

How does LLWW get to function?

What can LLWW do?

Question: will minimum streamflows be met for fish in this watershed?

Potential streamflow maintenance

*headwater wetlands

- * beaver complexes
- * oxbows
- * ponds
- * fens

Map potential function at the landscape level

Limitations of LLWW

Wetland connectivity and interspersion

• Wetland areas along large rivers appear somewhat disconnected

Limitations of LLWW

Wetland connectivity and interspersion

 Riparian mapping shows greater connectivity between wetlands and informs potential function

Summary

PABGN

PEMI

General

- LLWW predicts <u>potential</u> wetland functions
 - Actual function ascertained via conditional assessments

Automation

- Model works well for most LLWW attribution
- Needs work: Lentic systems, some flow paths
 - Finer elevation detail: LiDAR
- Manual assignment of modifiers plays key role
 <u>Application</u>
- Can give managers better idea of where certain wetland functions take place

Thank You

- EPA Region 8
- Saint Mary's
 University
- Joe Fortier
- Jen Chutz
- Jamul Hahn
- Spatial Analysis Lab
- Colorado Natural Heritage Program
- Utah Geological
 Survey
- EMMA workgroup at UM
 - Eric Dressing

