

Mapping Hydrologic Connectivity and Wetlands with LiDAR Processes and Techniques from Minnesota and Wisconsin

Sean Vaughn, MNIT@DNR

3D Geomatics Committee Chair

GIS hydrologist – Watershed & LiDAR data steward sean.vaughn@state.mn.us

Rick Moore , MNIT@DNR

DEM Hydro-mod Subgroup Chair

GIS Analyst – Watershed & LiDAR Data Steward

rick.moore@state.mn.us

Tuesday, January 19, 2021 2:00 PM (central time) Online

Digital Elevation Model (DEM) HYDRO-MODIFICATION

An Introduction to Minnesota's Perspective

Note: DEM **Hydro-modification** = DEM **Conditioning**

DEM Hydro-modification: is a digital depression examination process that uses terrain analysis tools in a geographic information system (GIS) to modify lidar-derived, raster-cell elevation values (Z-values) in digital elevation models (DEM) resulting in a hydro-modified DEM (hDEM).

Introduction

Topics/Agenda...

Agenda

Mapping Hydrologic Connectivity and Wetlands with LiDAR Processes and Techniques from Minnesota and Wisconsin

Key Topics from Sean and Rick

- Awareness: Lidar does not replicate hydrologic connectivity of the landscape.
- Lidar-derived DEMs: Mapping and Establishing Hydrologic Connectivity
- LiDAR does its job, lack of flow in DEMs is not a flaw of lidar • Coordination: Establishing Collabor all all all and the functional data (Point Cloud, DEMs) hDEMs are foundational data (Point Cloud, DEMs)
- hDEM Special digital surfaces

Establish Coordination to ensure hDEM development is conducted to a level of completes and accuracy that serves all hydraulic and hydrologic business.

Culvert Database supports culvert data sharing for DEM hydromodification

Building Connections to Lidar and Wetland Management

- I started modifying Digital Elevation Models (DEMs) in 1997
 - Rick has been modifying DEMs for the last decade
- My career started in Wetland Delineation and mapping the hydrologic connectivity of wetlands (surface water)
- I was part of bringing lidar to Minnesota starting in 2002, our statewide collection was completed between 2008 – 2012.
- I'm serving as a lead to bring Minnesota its second state lidar collection.

Sean Vaughn Hydro Background | Manual Hydrography Mapping

Field Inspection – Roadside Mapping (1992)

Depressions & Impressions

Drainage Discoveries

Sean Vaughn Hydro Background | Manual Hydrography Mapping

• Field Inspection – Aerial Mapping (1992)

- Oblique Photos Indicate Linear Signatures of Ditching/water routing
- LiDAR Captures this Detail

Sean Vaughn Hydro Background | Manual Hydrography Mapping

One Dimensional Planar View – Manual GIS (1992 - 1994)

Manual Interpretation

Manual Illustration

Hydro Background | Manual Hydrography -> Lidar-DEM Hydrography

 LiDAR products allow us to identify all of those hydrography features from one high accuracy data set.

9

3DGeo Workgroups

Sectors of Expertise

- Multidiscipline committee organized by workgroups
- Each discipline sector is comprised of subject matter experts
- Five workgroup-sectors now established with work plans
- Today we will share the successes of the DEM Hydro-modification Subgroup
 - Rick Moore Chair
 - Sean Vaughn Committee Liaison

3DGeo - Data Acquisition Workgroup

Mission:

 Promotes procurement of foundational 3D data for Minnesota.

Co-Chairs

• Sean Vaughn, Alison Slaats, and Gerry Sjerven

Lidar Acquisition Subgroup:

 Alison Slaats (MnGeo), Dan Ross (MnGeo), Jennifer Corcoran (DNR), Colin Lee (MnDOT), Sean Vaughn (MNIT DNR), Gerry Sjerven (MN Power), Matt Baltes (NRCS), Joel Nelson (U of MN), Joe Sapletal (Dakota Co), Andra Mathews (MnDOT), and Brandon Krumwiede (NOAA)

3DGeo – Hydrogeomorphology Workgroup

Mission

 Promotes the consistent development of Minnesota's hydrography data and to enable data exchange through coordination, cooperation and standards development

Co-chairs

• Rick Moore, Jamie Schulz and Andrea Bergman

Liaison

• Sean Vaughn

Minnesota Lidar Plan - Our Plan – Your Plan – ONE PLAN

The Minnesota Lidar Plan

- One plan for Minnesota
- Committee led plan, not a state agency plan
- **Collaboration** of the geospatial community
- Coordination of lidar acquisition in Minnesota leverages federal match dollars

Lidar acquisition success is built on a guiding plan that pulls the community together to foster collaboration and coordinate funding to achieve the common goal of new high density lidar across Minnesota

Minnesota State Lidar Plan and Story Map

https://www.mngeo.state.mn.us/committee/3dgeo/ac guisition/Minnesota State Lidar Plan.pdf

http://bit.ly/MnLidarPlanStoryMap

Lidar & DEMs

LiDAR Acquisition → Point Cloud

LIDAR Acquisition \rightarrow Point Cloud

LIDAR → Point Cloud

LiDAR does its job

- Millions of elevation data points
- LiDAR captures terrain and features (roads, dams, bridges) without regard to pass through conveyance of water (e.g., culverts).
- Creates Digital Dams in the DEM
- Not unique to Minnesota

Features of hydrologic Significance.

- Nickpoint
- Fluvial Processes
- Soil Degradation
- Where does the watercourse begin ?
 - Where concentrated flow begins.
 - LiDAR captures these landforms.

We Model this with DEMs

LIDAR \rightarrow Point Cloud \rightarrow DEM

- Features of hydrologic
 Significance.
 - Nickpoint
 - Water Conveyance Landform

- Where does the watercourse begin ?
 - Where concentrated flow begins. LiDAR captures these landforms.

We Do this with Digital Elevation Models (DEM)

Introduction

What is DEM Hydro-modification...

LiDAR \rightarrow Point Cloud \rightarrow DEM \rightarrow Digital Dams \rightarrow DEM Hydro-modification \rightarrow hDEM

DIGITAL DAM REMOVAL

LiDAR \rightarrow Point Cloud \rightarrow DEM \rightarrow Hydro-modification

Hydro-modified Digital Elevation Model (hDEM)

 Digital Dams in this DEM have been breached to allow water to flow in the model

(A) - Roads

- (B) Railroad
- (#1) Watercourse
 - Receives water from these "breached" locations (A) and (B)

LIDAR \rightarrow Point Cloud \rightarrow DEM \rightarrow Digital Dams

LIDAR \rightarrow Point Cloud \rightarrow DEM \rightarrow Digital Dams

DEM Hydro-modification Animation...

1.) Replicating a real-world scenario, water (raindrop) flows within the channel starting from the east (right)

2.) Simulated raindrop continues its path following the downward slope of the channel

3.) Water passes through the culvert underneath the road

4.) Sloping channel bed continues to pull the simulated raindrop downstream within the channel

5.) Simulated raindrop continues downstream within the channel based on the sloping channel bed

...And continues downstream within the channel based on the sloping channel bed

6.) In the Terrain Analysis Model, the road acts as a Digital Dam

7.) In the Model, all cells must "flow" to the outlet, therefore depressions are filled to a discharge (spill) elevation

8.) The flow pathways are derived and the filled area now outlets to the north at the lowest elevation

9.) The modeled water droplet now flows along the new flow pathways across the filled region

10.) The modeled water droplet crosses the road at its lowest elevation and continues along flow pathway

11.) The modeled water droplet drops off the road embankment and continues along flow pathway

12.) The modeled water droplet continues along the flow pathway and never re-enters the channel

1.) In DEM Hydro-modification, a breachline (red arrow) is digitized at the location of the culvert

2.) In the hydro-modification process, the lowest elevation along the breachline is determined and

...all cells coincident with the breachline are assigned a value equal to the lowest elevation value.

3.) The new hydro-modified Digital Elevation Model is analyzed

...and new flow pathways are developed for the new hDEM

4.) The modeled water droplet now flows within the channel

...through the area of the road that was lowered based on the placed breachline

5.) It continues along the flow pathway that is contained within the channel.

6.) The process of removing Digital Dams continues as we replicate landscape hydrology. (end)

2- Methods of DEM Hydro-modification

- 1. Manual
- 2. Automated

3D Geomatics

DEM Hydro-modification Subgroup

Where is hydrography and watershed data today?

Today we have:

- Multiple, out-of-sync copies of hydrography data
- Locations of stream centerlines based on historic maps
- Inefficient processes for creating derived data products
- Costly field site verifications
- Missing data lowers public trust
- Breachline datasets from various organizations created independently

The future?

What we could have:

- Single, authoritative data source
- Harmonized data that leverages recent state investments
- Automated processes identify changes on the landscape
- High-resolution data that minimizes field site verifications
- Enhanced public trust in watershed management decisions

Mission:

Dedicated to developing the foundation for single, authoritative, digital dam breachline and hDEM datasets for Minnesota utilizing standards and methodology developed through collaboration with breachline subject matter experts

Workgroup

- Co-chairs
 - Rick Moore
- Liaison
 - Sean Vaughn

976.84	199.21	in Ap	215.84	ania	ancia	31.50	311.04	-	ini ini	311.72	311.92	371.48		216.2	-	an.at	311.88	211.57	311.4	antei.	311.62	311.42
791.43	219.26	max	411.44	ànár	anat	à15-26	311.21	310.96	311.81	311.116	311.99	311.8	-Ini an	-	212.10	311.42	271.83	211.85	311.65	271 68	219.74	311.73
211.41	279.43	111,24	A11 88	in.	714.25	111.20	ma	k11.18	311.28	211.78	311.87	-	M1-58	310.00	211.43	211.41	211.88	211.72	311.74	311.76	.211.83	311.86
nis	314.43	311,37	211.52	213.47	715.24	-	311.5	211.55	311.76	211.62	311.97	311.82	211.78	315.74	2115.73	211.60	311.73	211.74	311.77	395.83	311.98	211.95
316.75	311.74	291.71	311.63	313.04	311.54	011.5Z	211.58	311.67	311.77	311.84	342	311.31	391.00	211.5	315.74	311,22	201.74	3(1.79	311.85	311.85	311.92	311.98
are in	-	21111	-	315.51	31573	311.66	211.61	211.68	311.77	mas	312.01	311.84	-	211.76	211.67	311.73	3114	312.07	319.81	311.87	211.88	311.97
-	-	-					-	31129	311.25	311.08	312	311.95	311.78		-	-	-	11.01		(anin		11.42
10. SH	508.14	100.28	-				325.41	-	an a	115.84	312,06	211.26	-		-	-	-	-	-			
307.16	307.06	307,68	367.12	307.18	307.27	367.73	310.42	-	-	****	-	-	201.04		-	-	306.12	308.04	-108.1		-	-
307.52	307.22	367,13	397.45	907.07	307.15	307.00	307.09	307,09	307.09	307.99	307.09	307.00	307.05	307.08	307.09	367.00	307.05	307.03	367.16	307.15	367.17	367.81
368.58	3100 333	308.00	306.18	318.54	308.08	398.49	388.17	315.78	311.27	311.05	312.07	311.98	311.81	-	38.74	308.1	307 47	307 05	387.87	207.08	367.74	367.00
310.86	196.5	316.1	309.99	332.00	309.7	309.6	316.17	-	311.43	211.0	312.05	311.35	311.34	11.00	- 101.91	301.30	201.21	301.47	388.61	38.5	386.54	366.25
(alar	311.55	211.80	311.75	315.86	38.4	218.1	318.6	318.48	111.64	311.65	312.11	211.96	211.97	331.61	301.03	810.36	210.11	312.41	311.54	10.94	200.5	110.00
311.85	311.85	311.82	311.75	315.86	383.4	211.1	211.4	311.48	223.64	911.09 211.95	312.11	311.36	312.01	311.81 211.93	301.03	311.35	.210.11 312.22	312.41	311.54	312.38	3112.52	312.2
311.88	311.35 311.34 311.38	211.40 311.82 312.81	311.75 311.35 211.35	315.86 315.96 315.97	2115.85 2115.85	211.45 011.45	211.4 211.74 211.83	311.48 2917.3 311.83	191.44 (111.83 (111.93	915.85 315.95 915.99	312.11 312.1 312.12	211.96 311.97 312	211.97 312.91 312.02	111.81 311.85 312.02	312.08	510.36 311.35 312.18	318.11 312.22 312.23	312.41 312.42 312.36	213.94 312.34 312.46	312.38 312.53	318.5 312.52 312.64	34E.00 352.2 312.73
311 88 311 88 312 86 312 67	311.34 311.34 311.38 312.06	311.82 312.81 312.64	311.25 211.25 211.26 312.11	311.300 311.300 311.300 311.307 312.12	315.4 215.85 352.67	211.15 311.85 312.01	211.4 211.74 211.83 215.87	311.48 311.3 311.83 211.83	311.85 311.95 311.95	311.69 311.99 312.94	312.11 312.1 312.12 312.12	211.36 311.3/ 312 312.04	311.02 312.01 312.02 312.06	111.00 311.05 312.02 312.04	312.08 312.14	810.38 311.35 312.18 312.22	318.2) 312.22 312.23 312.29	312.41 312.42 312.36 312.38	313.94 312.34 312.46 312.46	312.53 312.53 312.52	3112.52 312.64 312.67	312.2 312.73 312.84
311.88 312.67 312.67 312.64	21125 21134 21134 312.06 312.24	21140 311.82 312.81 312.81 312.24	311.25 311.35 211.34 312.11 312.29	911.98 911.98 911.98 912.92 912.28	311.4 211.85 311.82 352.67 .112.7	211.1 217.85 217.87 212.01 312.71	311.4 211.74 211.83 311.637 212.68	311.48 311.53 511.83 511.83 511.84	111.64 141.63 241.95 241.95	311.69 311.55 311.59 312.04 912.01	312.11 312.1 312.12 312.12 312.17	211 36 211 37 312 312 04 312 04	211.97 312.01 312.02 312.05 312.06	211.81 211.95 212.02 212.04 212.07	3111 03 312 08 312 14 312 19	311.35 312.18 312.22 312.27	312.22 312.22 312.29 312.29 217.33	312.49 312.42 312.36 312.38	312.34 312.46 312.46 312.47	312.38 312.33 312.53 312.52 312.52	3112.32 312.54 312.64 312.67 312.67	312.2 312.73 312.84 312.84

3D-Geomatics → Hydro Workgroup → DEM Hydro-modification Subgroup

Purpose of the DEM Hydro-modification Subgroup

- Capitalize on knowledge of subject matter experts who have built their own individual digital dam breachline datasets and perform hydro-modification.
- Develop Standards, Methodology, and QA/QC Protocol to support DEM hydro-modification and development of the breachline dataset.
- Publish these features into one authoritative breachline dataset for use in developing hydro-modified digital elevation models (hDEMs).
- Support public and private business needs associated with hydrologic modeling of the landscape using hydro-terrain analysis tools (e.g., <u>PTMApp</u> and <u>ACPF</u>).

3D-Geomatics → Hydro Workgroup → DEM Hydro-modification Subgroup

Developments of the Breachline Subgroup

- Standardized Attributes
- Methodology and Protocol
- Breachline Data and Work Area Identification

- Data Source (future discussion definition of Data Source)
 - User Interpretation (Default Value)
 - Culvert Inventory
 - Drainage Lines
 - Storm Sewer
 - o Automated Breachlines
 - o Other
- Type (The breachline represents what type of feature on the landscape
 - o Bridge or Culvert (Default Value)
 - o Artifact, LiDAR Inconsistency
 - o Tile, Ditch, Hydro-Connection
 - o Other
- Cell Size of Raw DEM: (Expected Resolution of Use?)
 - o Sub-meter
 - o 1 meter
 - o 3 meter
 - o 5 meter
 - o 10 meter
- Confidence of Presence
 - o High (Surveyed, Field Verified, Aerial Image Verified)
 - \circ $\;$ Medium (Assumed location based on geospatial evidence) (Default Value) $\;$
 - o Low (Analyst estimation, but inconclusive evidence)
- What type of project were the Breachlines created for: (Production Attribute)
 - o hDEM Level 3
 - o hDEM Level 2
- Local Review (needs review) (Production Attribute)
 - o Yes
 - No (Default Value)
- Reviewer (Production Attribute)
- Comments 100 character text field
- Created Analyst System logged in user name at time of creation
- Created Date System generated date and time based on time of creation
- Edited Analyst System logged in user name at time of edit
- Edited Date System generated date and time based on time of edit

Standardized Attributes

Data Source	Туре	Cell Size	Confidence of Presence	Project Type	Local Review	Comments
User Interpretation	Bridge or Culvert	Sub-meter	High (Surveyed, Field Verified, Aerial Image Verified)	hDEM Level 3	Yes	100 Character Text Field
Culvert Inventory	Artifact, LiDAR Inconsistency	1 meter	Medium (Assumed location based on geospatial evidence)	hDEM Level 2	No	
Drainage Lines	Tile, Ditch, Hydro Connection	3 meter	Low (Analyst estimation, but inconclusive evidence)			
Storm Sewer	Other	5 meter				
Automated Breachlines		10 meter			•	Created Analyst
					•	Created Date

- Edited Analyst
- Edited Date

DIGITAL DAMS - BREACHLINE PLACEMENT – MINIMUM ELEVATION VALUE METHOD

• In Breachline Placement, locations are identified where culverts or bridges have not been breached in the digital elevation model (DEM).

 This image is used to show the location of a culvert

DIGITAL DAMS - BREACHLINE PLACEMENT – MINIMUM ELEVATION VALUE METHOD

 A breachline is digitized in the direction of flow on the DEM from the upstream low elevation to the downstream lowest cell elevation.

 In placement of line, Map Tips can assist with identifying elevation values and placement

							-			-	-						-						
311.5	311.47	311.43	311.34	311.34	311.3	311.25	311.26	311.3	311.16	311.28	311.78	311.97	311.9	311.54	310.88	311.43	311.67	311.69	311.72	311.74	311.76	311.83	311.86
311.64	311.6	311.63	311.57	311.52	311.47	311.34	311.35	311.5	311.55	311.76	311.82	311.97	311.92	311.78	311.74	311.73	311.69	311.73	311.74	311.77	311.83	311.89	311.95
			-	harden	Land and				and the second		-						and and	Lunch		0.020			
311.85	311.79	311.74	311.71	311.69	311.68	311.58	311.52	311,59	311.67	311.77	311.86	312	311.91	311.86	311.8	311.74	311.72	311.74	311.79	311.85	311.85	311.92	311.98
311.55	311.58	-11161	311,73	311.63	311.01	311.73	311.68	311.61	311.68	311.77	311.83	312.01	311.94	311.81	311.76	311.67	311.73	311.8	312.07	311.81	311.87	311.88	311.97
109.69	100 8	100.01	702.07					310.03	311.29	311 75	311 88	342	311.05	311 78	11.51	111-20	-	111.42	311.65	311.62	111.61	1110	111.67
									Contractor of	211.14	511.00	312	511.55	STILL									
308.14	308.16	308.14	308.26	308.52	308.48	305.54	308.79	309.49	310.44	311.4	311.84	312.06	311.95	311.68	-		309.80	109.87	309.73	309.93	309.81	216.62	-110.10
307.12	307.16	307.09	307.08	307.12	307.18	307.27	307.73	308.93	310.15	311.23	311.82	312.03	311.96	311 54		309.51	308.53	308.02	308.04	308.1	308.13	308.34	308.48
	1						-			-	_		-										
307.34	307.52	307.22	307.13	307.05	307.07	307.13	307.64	309.19	310.44	311.31	311.88	312.07	311.95	311.61		309.55	307.92	307.09	307.03	307.16	307.15	307.17	307.31
308.42	308.39	308.33	308.09	308.18	308.14	308.08	308.49	309.17	310.29	311.27	311.86	312.07	311.98	311.61		309.24	308.1	307.47	307.05	307.07	307.08	307.21	307.09
210.000									-														
310.78	310.66	310.1	310.1	309.99	309.89	309.7	309.6	310.17	310.85	311.43	311.9	312.05	311.99	311.84	311.05	309.91	308.98	308.61	308.67	308.61	308.5	308.54	308.29
311.82	311.7	311.65	311.69	311.75	311.86	311.4	311.1	311.4	311.46	311.64	311.89	312.11	311.96	311.97	311.61	310.93	310.38	310.37	310.61	310.64	310.59	310.5	310.36
211.0	144.00	244.04	341 02	344 05	344.06	311.05	744.95	710 7.8	244.7	214 03	344.05	242.4	311.07	342.04	341.05	344.00	244 05	342 22	342.42	343 54	342 30	343 32	343.3
511,8	311.60	311.94	311.92	311.35	511.96	311,95	311,85	311.74	311.7	311.83	311.35	312.1	311.97	312.01	311.95	311,83	311.93	312.22	312.42	312.34	312.30	312.32	312.2
311,89	311.98	311.98	312.01	311.98	311.97	311.92	311.87	311.83	311.83	311.93	311.99	312,12	312	312.02	312.02	312.08	312.18	312.27	312.36	312.46	312.53	312.64	312.73
312.03	312.07	312.06	312.08	312.11	312.12	312.07	312.01	311.97	311.89	311.91	312.04	312.17	312.04	312.06	312.04	312.14	312.22	312.29	312.38	312.46	312.52	312.67	312.84

DIGITAL DAMS - BREACHLINE PLACEMENT – MINIMUM ELEVATION VALUE METHOD

Using the minimum elevation method, the cell with the lowest elevation value is identified.

 All cells along the line are assigned that elevation, resulting in each cell elevation value being lowered to that value.

-		-		-		-	-		-	-	244.70		245.0	-		-					244.70	214.02	-
311.9	311,47	311.43	311,34	311.34	311,3	311.20	311.20	311.3	311.16	311.28	311,76	311.97	311.9	317.54	310,88	311.43	311.07	311.69	311.72	311./4	311.70	311.83	311.80
311.64	311.6	311.63	311.57	311.52	311.47	311.34	311.35	311.5	311.55	311.76	311.82	311.97	311.92	311.78	311.74	311.73	311.69	311.73	311.74	311.77	311.83	311.89	311.95
311.85	311.79	311.74	311.71	311.69	311.68	311.58	311.52	311.59	311.67	311.77	311.86	312	311.91	311.86	311.8	311.74	311.72	311.74	311.79	311.85	311.85	311.92	311.98
348.05	331.59	315.61	311.73	311.63	311.61	311.73	311.68	311.61	311.68	311.77	311.83	312.01	311.94	311.81	311.76	311.67	311.73	311.8	312.07	311.81	311.87	311.88	311.97
309.69	309.8	009-81	309.93					310.65	311.20	311.75	311.88	312	311.95	311.78	3(1.53	314.20	-	-	111.65	311.62	31961	311.0	311.67
308.14	308.16	308.14	308.26	308,52	308.48	305.54	308.79	309,49	-	311.4	311.84	312.06	311.95	311.68			309.85	309.87	309.73	369.93	309.81	110.02	
307.12	307.16	307.09	307.08	307.12	307.18	307.27	307.73	308.93	310.15	19125	311.02	312.03	311.96			309.51	100.55	308.02	308.04	308.1	308,13	308.34	308.44
11-2-2-2		-					-						2000	Second Second					main				
307.34	307.52	307,22	307.13	307.05	307.07	307.13	307.09	307.09	307.09	307.09	307.09	307.09	307.09	307.09	307.09	307.09	307.09	307.09	307.03	307.16	307.15	307.17	307.31
308.42	308.39	308.33	308.09	308.18	308.14	308.08	308.49	309.17	310.29	311.27	311.86	312.07	311.98	311.61	310.59	309.24	308.1	307.47	307.05	307.07	307.08	307.21	307.09
310.78	310.66	310.1	310.1	309.99	309.89	309.7	309.6	310,17	310.85	311.43	311.9	312.05	311.99	311.84	311,05	309.91	308.98	308.61	308.67	308.61	308.5	308.54	308.29
311.82	311.7	311.65	311.69	311.75	311.86	311.4	311.1	311.4	311.46	311.64	311.89	312.11	311.96	311.97	311.61	310.93	310,38	310.37	310,61	310,64	310.59	310.5	310,36
311.8	311.88	311.94	311.92	311.95	311.96	311.95	311.85	311.74	311.7	311.83	311.95	312.1	311.97	312.01	311.95	311.89	311.95	312.22	312.42	312.34	312.38	312.32	312.2
311.89	311.98	311.98	312.01	311.98	311.97	311.92	311.87	311.83	311.83	311.93	311.99	312.12	312	312.02	312.02	312.08	312.18	312.27	312.36	312.46	312.53	312.64	312.73
312.03	312.07	312.06	312.08	312.11	312.12	312.07	312.01	311.97	311.89	311.91	312.04	312,17	312.04	312.06	312.04	312.14	312.22	312.29	312.38	312.46	312.52	312.67	312.84

DIGITAL DAMS - BREACHLINE PLACEMENT – MINIMUM ELEVATION VALUE METHOD

7	3	+	*	7	7	+	ĸ	*	٠	*	*	4	+	+	*	+	*	4	*	+	4	R	+
+	+	7	*	*	*	*		7	+	+	R	+	7	7	+	ĸ		R	R	R	+	*	*
*	*	*	+	*	7	+	Ŧ	ĸ	ĸ	ĸ	+	4	3	7	ы	*	ĸ	ĸ	+	+	ĸ	+	K
*	*		*		*	*	÷	*	ĸ	K	+	4	+	N	ы	*	¥	÷	K	*	*	*	+
*	*	٠	٠					*		K	ĸ	R	2	ы	N	-	*	+	*			*	*
*	÷	+	4	*	*	٠	E	ĸ	ĸ	4	+	+	-	и	-		*	*		*	4	.*	*
+	•	•	+	×	+	¥	÷	4			4	*	*			+	*	÷	*	*	÷	*	*
																						4	(
Ť	•	Ť	+	+	+	>	-	+	+	+	->	-	-	+	-	•	+	: >	+	+	+	-2	+
1 1	↑ ↑	T T	÷	→	*	→	*	→)	,	→	→	7	+	7	+	→	*	+ +	+	+ 7	*	*
+ + +	+ + +	* * *	+ + +	+ + +	* *	*	· · ·	→ ↑ ۴	+ + R	+ + K	* +	* *	7 7 7	7 1 7	9 1 7	э т л	+ 7	*	+ + 1	+ + +	, л	* * *	* * *
* * *	т т л	+ + +	÷ * * *	→ ↑ ↑ ↑ ↑	* *	 * * * * 	* *	+ + K K	+ + K	→ ↑ ℝ	* * K	* *	э † Л	7 1 7 7	7 1 7 7	÷ † 7 7	+ 7 7	*	> > 1	+ + +	> 7 *	* * *	* * *
+ + + + 7	т т л т	+ + + +	÷ * * * *	+ +	* * *	+ + + + 7	 * * * * * * 	+ + K K	+ + K K) † R R	+ + K	* * *	* 7 7 7 7	7 7 7 7 7 7	7 1 7 7 7 7	* * 7 7 7	• • 7 •	* * * *	> > 1 1	> + + +	> 7 7 * *	*	*
1 1 1 1 7 7 8	1 1 7 7 7 8	1 1 1 1 1 1 5	÷ * * * * *	→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ <	* * * * *	+ + + 7 7	• • • •	+ * K K 7	• • •) † R R R	+ + R R R	* * *	* 7 7 7 7 *	* 7 7 7 7 7 7	7 7 7 7 7 7	* 7 7 7 7 7	* 7 * 7 * * * * *	* * * * *	> + + + + F	 > + + + + + + + + 	> 7 7 * *	*	+ + + + + +

 Flow Direction is then calculated for the Digital Elevation Model (DEM).

- The arrows
 represent the
 flow direction
 from each cell to
 the cell that it
 would flow into.
- The **blue line** represents the flow network.

Standardized Attributes

Data Source	Туре	Cell Size	Confidence of Presence	Project Type	Local Review	Comments
User Interpretation	Bridge or Culvert	Sub-meter	High (Surveyed, Field Verified, Aerial Image Verified)	hDEM Level 3	Yes	100 Character Text Field
Culvert Inventory	Artifact, LiDAR Inconsistency	1 meter	Medium (Assumed location based on geospatial evidence)	hDEM Level 2	No	
Drainage Lines	Tile, Ditch, Hydro Connection	3 meter	Low (Analyst estimation, but inconclusive evidence)			
Storm Sewer	Other	5 meter				
Automated Breachlines		10 meter			·	Created Analyst

- Edited Analyst
- Edited Date

Methodology and Protocol

Developments of the Breachline Subgroup

- Standardized Attributes
- Methodology and Protocol
- Breachline Data and Work Area Identification

IV.C. DIGITAL DAM IDENTIFICATION/INVESTIGATION

The identification of a digital dam is a multi-step process of looking at many different visual clues from the source data we have compiled. Hydro-modification is essentially depression analysis. Therefore, we start looking at the depth grid and the DEM for areas that show depressions occurring next to roads and other structures. As shown in the top center image, the darker blue colors show the greatest depth and therefore, should yield the lowest elevation value at that location. The process then looks at the aerial image for signs of culvert signatures.

The Flow Network also identifies that the flow pathways converge in this area from higher up in the watershed and overtop the road. This is a good indicator of the location of a culvert. Dark black circles within the green vegetation of a roadway is a good indicator of a culvert. This can be seen on the FSA image in the upper right. The image in the center right, an oblique image from Pictometry shows a culvert signature as well as the bottom center left image from the same Pictometry dataset.

Another tool we use in this process is street view images from Google and Bing, which can be accessed through the Google Bing toolbar referenced earlier in this document. We can see metal poles in the road ditch area which is a good indicator of a culvert. They are placed there to identify culvert openings for ditch mowers as well as any person that is proceeding through a road ditch, be it vehicle, tractor, ATV, or snowmobile. Using all these clues, we can proceed with a high confidence that there is a culvert at this location. Using the DEM as the placement reference, we would draw the

Methodology and Protocol

Methodology and Protocol

- Tools/Methods within ArcGIS:
- **DEM Hydro-Modification**
 - Breachline identification accounts for ~70% time
 - Performance Based
 - Most tools built on ArcGIS Platform
 - Most tools are calling the same code

ACPF_Toolbox_V1

- Results tend to be the same
- All strive to represent landscape • hydrology
- Utilize tools that improve the process of terrain analysis and hydro-modification. Utilize your time to identify the digital dams, not in running the tools

Breachline Data and Work Area Identification

Developments of the Breachline Subgroup

- Standardized Attributes
- Methodology and Protocol
- Breachline Data and Work Area Identification

Breachline Data and Work Area Identification

DEM Digital Dam Breachline Work

- Breachline datasets developed within Minnesota by subject matter experts.
- Tracks the development of breachline datasets utilizing the tiling scheme of PLS sections
- Identifies the confidence of breachline placement (accuracy) as well as the completeness of the PLS Section (1 mi²)

Culvert Inventory:

The Key to Building Confidence from Accuracy and Completeness

Culvert Data Standard

- Culvert Inventory brings <u>confidence to</u> <u>the placement</u> of breachlines based on the accuracy of the inventoried culvert feature.
- Culvert Data Standard can bring

 <u>efficiencies</u> into outdated processes by
 <u>reducing data entry time</u>, minimizing
 human error, and making data available
 in real-time.

Interim Guidance – LiDAR R & E (2011)

Interim Guidance on Acquisition of Culvert Geospatial Data

Authored by the LiDAR Research and Education Subcommittee¹ of the Minnesota Digital Elevation Committee

August 26 2011

Table of Contents

		Page
Section	Title	1
1	Introduction	7
2	Purpase	3
9	Applicability	3
4	Specifications	4
da	Feature Representation	4
dh	Feature Descriptions and Domains	6
de	Positional Accuracy	7
dd	Acquisition Methods	-8
do	Completeness and Maintanance	8
5	Cuivert Inventory and LIDAR Applications for Paraset	9
2	Definitions	10
7.	References	2
Europe 1	LIDAR derived DEM, 3-meter Resolution	8
Figure 2	Digital Dam in a LIDAR-derived DEW	
Table 1	Attribution Template	

1. INTRODUCTION

There is considerable interest in making use of the new UDAR-nerived digital elevation models (DEMs) in Minnesota² for wate resource projects, LIDAR DEMs provide a very practise depiction of the land surface. Hewever, LIDAR captures the topography of the andscape and all human-creater features upon t. LIDAR DEMs do not interently include important information about subsidiface water conveyance connections such as curverts, drain tiles, and storm servers. As a result, bridges, reads and other structures on the landscape effectively act as initial dams ('digital dams'), preventing terrain analysis algorithms from property routing the flow of water across the DEM andscade. Figure 1 below identifies many LIDAR DEM eigital dams caused by culverts. This figure illustrates the magnitude of the problem, aspecially when all the culverts in the state are considered. The digital dam problem and other related issues have been documented by numerous scientific investigators (Popperiga et al. 2010, Maldmen 2002; Hutchinson and Galant 2000; Hutchinson 1989).

Hydrologic analyses conducted using DEMs that do not excount for subsurface visiter conveyance are generally support. As a result, LIDAR DEMs need to be manipulated to allow the passage of water through digital dams. Fortunately, there are methods for modifying DEMs

that we we have a set of the set Manywelling cos alor mill ustron several aller film

Loge 1 11 111

Table 1 - Attribution Template

Tisti	Marine	· Description	5	Pier .	Langli Pracis	11		Terre	_	Luca
0	PPEJD	Unique i tentit	er T.				Geard	Derinain		Use
Gunner	GLANTT	Pipes leothing one attorossin keanting	91	-		23	-		_	4
Flag Tra-		Department of Department of the	nd Te	miter	-	2	1 14	1 - 54		×
Mar 1 yes	e me	Finameter at a studie	715		1	1	-	CAP, OWPA SHP DCP STE		+
Span	828_814	Length of Strar	let	1	-	8	-	CITY Sper-Bildge, char	-	+
314	ATE RISE	Level of Hay	Tee	1	- 1	5	-	-0 sharely unsormeration		¥
3.4 (A1)	17 (T907)	1+300 0-00	ires.		-	5	-	of printers of massing		Y.
Die 190	SALL LANE	Type of Snot	- APR	Cer		4	9	1915 Destred engin in feet		
Pist cor	RESTRICTO	Freide 123 18 H traine track Race	1021	1	12	-	-	alma	1	
Envirtion J	E ELEV_US	Upszewin invest	Test	-	3	-	-	tormants	1	
Testim 1	5. ÷ •v. 55	Downstream Inver	I Marrie	H.	5	-	3	TOFB coccured devalion in feet	Tr	
Commercia	COMMENTS	Surveyor Dates and	Farits	-		-	-2	the stoppined elevation in the	×	
Houseonia Accel suy	HRA	Hanzonial Procisional	1+21	-	755	-	-		+	
Me seal About very	1995	Vertical Positions	Teal	+	35			a) 5m 5 5-3m 3-5 - 2 m		
30-5-301	3ATE	SPS thesaid.	Tesi	+	10	_		0.00+1,0.03-1-1	2	-
Sareaste.	NUROE YOR	Name of surveying	Dale	+	5	-	5	Sistema d	*	
Type	COR (PP)	Type of antis	(dati	1	35			The second	4	
Wirt:	OWK_NAME	Menta Strengy owing the pice	Ini	1	22	_	K	Whates other	4	
Martemater Type	WHAT THEE	Type of childs markin rights	reu	1	35	-	-		¥	
Morristionce Name	WALL T STATE	Name of easy mobile righte	Tevi		2.0		10	make subjectioning sity.	*	1
teates	Discourse of the second	Hyperinsiocation at their	Test	-	33	_	-			
dycothe k	-WEIRLIGHK	articitate actional a da	1421	1	Ser.				1	+

* HSH Let = Detailed hydraulic and hydralogic modeling use

MN DNR Culvert Inventory Application

 Developed by DNR, the DNR Culvert Inventory Web Application allows data collected in the field to be reviewed in office in real time.

LIDAR \rightarrow Point Cloud \rightarrow DEM \rightarrow Digital Dams \rightarrow Culvert Data

- Hydro-modified DEM's use breachlines/culverts to breach digital dams and replicate landscape hydrology.
- <u>Culvert inventories inform</u>
 <u>technicians of locations of</u>
 <u>digital dams</u>/breachline
 placement during the hydro modification process.
- Most of the time and effort in performing hydro-modification is reviewing various datasets and layers in a GIS to determine if there is a digital dam at a certain location

MN DEM Hydro Modification Review Application

- LiDAR does its job, lack of flow in DEMs is not a flaw of lidar
- Proper replication of landscape hydrology in DEMs is required
- hDEMs are foundational data (Point Cloud, DEMs)
- Establish Coordination via a committee to formulate a Community of Practice to ensure hDEM development is conducted to a level of completeness and accuracy that serves all hydraulic and hydrologic business.
- Culvert Database supports culvert data sharing for DEM hydromodification

Thank You!

Sean Vaughn | Rick Moore

sean.vaughn@state.mn.us

rick.moore@state.mn.us

3D Geomatics Committee www.mngeo.state.mn.us/committee/3dgeo

3D Geomatics Hydrogeomorphology Workgroup – DEM Hydro-modification Subgroup www.mngeo.state.mn.us/committee/3dgeo/hydro