

Intermountain West Joint Venture Image segmentation for wetlands inventory: data considerations and concepts

Presented by :

Patrick Donnelly – Spatial Ecologist Intermountain West Joint Venture Missoula, MT

Wetland inventory needs:

- Small spatial scales
 - High precision
 - High accuracy
- Dynamic ecological setting

Modeling (Human)

- Field Observation
- Direct Recognition
- Interpretation by Inference
- Probabilistic Interpretation
- Stereo interpretation

Traditional photo interpretation strategies:

Data inputs

Stereo CIR areal imagery

Image object strategies require:

Modeling (computer)

- Segmentation modeling
- Machine learning

Data inputs

- Multi spectral imagery
- High spatial resolution data
- Multi temporal scale
- Physiographic / structural characterization

Potential tradeoffs:

Traditional PI

- High labor input
- Lower startup cost
- Lower production efficiency

Computer Modeling

- High data input
- Higher startup cost
- Higher production efficiency
- Integration of new data and techniques

Investment considerations:

- Workforce skills
- Labor capacity and cost
- Available capital
 - **Conservation needs**

Evaluate needs:

Example 1.

Need to develop models that delineate wetland boundaries to be interpreted and labeled using traditional photo interpretation

Example 2

Need to develop models that delineate wetland boundaries and model (automate) wetland class labeling

Object based (Segmentation) concept:

Need to simplify and model high resolution digital data in logical units that can consider:

- Spectral resolution
- Radiometric resolution
- Spatial resolution
- Temporal resolution

Alamosa NWR, CO - NVCS floristic level plant community inventory plot data collected within object based grid Acquisition or collection of associated plot data is required to interpolate (model) wetland habitat classes continuously across project area.

Integration of field data collection tools

National Vegetation Classification System Communities

Acroptilon repens - 20.8 acres
Chenopodium spp 198.9 acres
Distichlis spicata Intermittently Flooded Herbaceous Alliance - 113.7 acres
Eleocharis spp Carex spp. Herbaceous Vegetation - 601.9 acres
Ericameria nauseosa Shrubland Alliance - 841.1 acres
Helianthus tuberosus - 16.5 acres
Hordeum jubatum Temporarily Flooded Herbaceous Alliance - 45.5 acres
Juncus balticus Seasonally Flooded Herbaceous Alliance - 2105.1 acres
Lepidium latifolium - Juncus balticus Herbaceous Vegetation - 2240.0 acres
Lepidium latifolium monotypic Herbaceous Vegetation - 469.6 acres
Pascopyrum smithii Herbaceous Alliance - 113.7 acres
Phragmites australis Semipermanently Flooded Herbaceous Alliance - 505.1
Populus angustifolia Temporarily Flooded Woodland Alliance - 18.8 acres
Salix (exigua, interior) Temporarily Flooded Shrubland Alliance - 206.7 acres
Salix amygdaloides Temporarily Flooded Woodland Alliance - 4.2 acres
Sarcobatus vermiculatus Shrubland Alliance - 1861.6 acres
Sporobolus airoides Herbaceous Alliance - 277.3 acres
📕 Typha (angustifolia, latifolia) - (Schoenoplectus spp.) Semipermanently Flooded Herbaceous Alliance - 1057.3 acr
Temporarily flooded sand flats 2 acres
Unconsolodated material sparse vegetation (soil, sand and ash) - 381.8 acres
non-agriculture disturbed areas - 328.6 acres
planted/restored - 20.8 acres
water - 643.6

Modeling outputs create tremendous efficiencies that are capable of addressing ecological complexity if the necessary data inputs are available

es 1 Alamosa National Wildlife Refuge 2005 Vegetation/Habitat Inventory thwest Region, Habitat and Protection Evaluation Team (HAPET) nal Wildlife Refuge System, Division of Planning

Intermountain West Joint Venture **Object based classification model concept:**

Incorporation of multi scale informational inputs:

- Plot data collection and input
- Terrain derivatives (slope, aspect, elevation)
 - Structural derivatives (canopy height, understory density)
 - Spectral depravities/indices (NDVI, tassel cap, Soil-Adjusted Vegetation Index)
 - Ancillary data (Hydric soils, FSA, NWI)

Object based classification model – measuring historic ecological settings:

Understanding of historic biotic and abiotic process prior to large scale impacts to ecological processes (agriculture, damming, ditching, road construction, etc...) (Laubhan et al., 2005).

Provides insight to the distribution of different wetland types and processes...

Features can be overlooked during restoration efforts because many of the identifiable wetland feature characteristics are no longer recognizable.

Unidentifiable wetland feature can lead to improper site selection when developing restoration and management planning efforts (King and Fredrickson 1998).

Rio Grande 1935 panchromatic orthorectified imagery

Rio Grande 1935 segmented

Rio Grande 1935 (La Joya Reach) Landcover Inventory

NVCS Subclass	Acres	% of reach
Consolidated Rock Sparse Vegetation	64.8	0.6%
Cultivated/Planted	2334.6	21.1%
Deciduous Open Tree Canopy	2.7	0.0%
Deciduous Shrubland Closed Canopy	1738.7	15.7%
Deciduous Shrubland Open Canopy	319.1	2.9%
Deciduous Shrubland Sparse Canopy	336.4	3.0%
Herbaceous Graminoid / Forb Vegetation	1345.5	12.2%
Temporarily Flooded Sandbars	1068.3	9.7%
Temporarily Flooded Sandbars Sparse Vegetation	92.4	0.8%
Temporarily Flooded Sandflats	365.3	3.3%
Temporarily Flooded Sandflats Sparse Vegetation	506.3	4.6%
Unconsolidated Material Sparse Vegetation	211.5	1.9%
Water	2662.3	24.1%

La Joya WMA

Cultivated/Planted

Deciduous Open Tree Canopy Deciduous Shrubland Closed Canopy Deciduous Shrubland Open Canopy Deciduous Shrubland Sparse Canopy Herbaceous Graminoid / Forb Vegetation Temporarily Flooded Sandbars Temporarily Flooded Sandbars Sparse Vegetation Temporarily Flooded Sandflats Sparse Vegetation Unconsolidated Material Sparse Vegetation Water

Sevilleta NWR

05

Miles

19

Overview

- 1. 23,775 hectare closed basin
- 2. Convective summer precipitation drives productivity
- 3. >5,000 hectares of adjacent cultivated lands

Sept. 2006

Sept. 2002

Babicora Basin, Mexico April 2006 – March 2007 (green-ms, blue-surface water)

Babicora Basin, Mexico April 2002 – March 2003 (green-ms, blue-surface water)

Monitoring and Analysis: 2002/03 – 2006/07 wetland productivity curve

Monitoring and Analysis: 2002/03 – 2006/07 surface water abundance

Segmentation and related software:

Segmentation eCognition SPRING Berkeley Segmentation Monteverdi ERDAS ENVI

Data Mining/Machine Learning

- R
- R Rattle
- **R** Random Forest
- **R- SVM (Support Vector Machines)**

Additional resources:

USFWS - Remote Sensing application Center (RSAC) http://www.fs.fed.us/eng/rsac/

Intermountain West Joint Venture (IWJV) patrick_donnelly@fws.gov

eCognition Developer 8 Quickstart http://www.ecognition.com/products/trial-software

Rattle: A data Mining GUI for R http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf

QUESTIONS?

Needmore