The Association of State Wetland Managers Presents:

Improving Wetland Restoration Success & Natural Floodplain Functions Alliance - Joint Webinar -

> Stream-Wetland Restoration Presenters: Will Harman, Stream Mechanics Matt Daniels, River Design Group

Moderators: Jeanne Christie & Marla Stelk

Supported by EPA Wetland Program Development Grant 83578301

If you have any technical difficulties during the webinar you can send us a question in the webinar question box or call Laura at (207) 892-3399 during the webinar.

HAVING TROUBLE WITH THE SOFTWARE?

Don't Panic we've got it covered!

Check your email from this morning:

- 1. You were sent a link to instructions for how to use the Go To Webinar software.
- 2. You were also sent a PDF of today's presentation. This means you can watch the PDF on your own while you listen to the audio portion of the presentation by dialing in on the phone number provided to you in your email.

AGENDA

- Welcome and Introductions (5 minutes)
 - Restoration Webinar Schedule & Future Recordings (5 minutes)
- Stream-Wetland Restoration (60 minutes)
 - Will Harman, Stream Mechanics
 - Matt Daniels, River Design Group
- Question & Answer (15 minutes)
- Wrap up (5 minutes)

WEBINAR MODERATORS

Jeanne Christie, Executive Director Marla Stelk, Policy Analyst

WETLAND RESTORATION PROJECT

- Interdisciplinary workgroup of 22 experts
- Monthly webinar series
- Draft white paper based on webinars, participant feedback, external review
- Pursuing strategies that:
 - Maximize outcomes for watershed management
 - Ecosystem benefits
 - Climate change
 - Invasive species
 - Improve permit applications and review
 - Develop a national strategy for improving wetland restoration success

ACTION PLAN IMPLENTATION

WEBINAR SCHEDULE & RECORDINGS

Association of State Wetland Managers - Protecting the Nation's Wetlands.

Password

Remember Me

ASWM Upcoming Webinars

- Stream/Wet Meadow Restoration September 8, 2015
- The Florida Wetlands Integrity Dataset: Part 2 September 16, 2015
- Solar Project Siting and Wetland Permitting September 29, 2015

For a complete list of ASWM webinars, click here.

week click here.

assessment methods to obtain science-based answers to wetland management problems. While it provides an overview of many common approaches to wetland monitoring, the focus is primarily on *why* these methods are selected for a given purpose. This report encourages the thoughtful identification of the most appropriate and efficient methods in light of available financial and staff recourses.

Association of State Wetland Managers - Protecting the Nation's Wetlands.

ASWM Upcoming Webinars

- Stream/Wet Meadow Restoration September 8, 2015
- + The Florida Wetlands Integrity Dataset: Part 2 September 16, 2015
- Solar Project Siting and Wetland Permitting September 29, 2015

For a complete list of ASWM webinars, click here.

lame	ASWM	I Am	Wetlands	Science	Wetland Programs	Watersheds	Law	News	Biog

Search ASWM

Main Menu

- Join/Renew
- Contact Us

WEBINAR

SCHEDULE &

RECORDINGS

- Netwa
 Webinard
- ASWM Publications
- Wetlands One-Stop Mapping
- · Donate
- Volumer

Member's Login

1 Utername

Password

Remember Me

Login

Forgot your usemame? Forgot your pasaword?

ASWM Menu

- · ADOLE ASWAI
- ASWM Projects
- Do Business With Us
- Volunteer
 Contact ASVM
- Publications
- ASWM Members
- Login Required.
- · ASWM Board (Logn Reg)
- Hawsiattors:
- Insider's Edition

The Association of State Webland Managers holds webinars on various topics, most of which relate to a specific project and work group. In addition, ASWM holds webinars as part of its members' webinar sense on topics of interest to members. Please click on the webinar group name below for more details about individual webinars. In all cases, if you have any questions about registering for a webinar, please contact Laura at linum@swm.org. If you are a member, and you missed a webinar that was part of the members' webinar series, please contact us. We will post the recordings of the webinars going ahead.

A presentation given during a webmar

If you haven't used Go To Webinar before or you just need a refresher, please view our guide prior to the webinar here.

Special Topics Webinars

Members' Wetland Webinar Series

Future Fast Members Dnly Past Normembers

Natural Floodplain Functions Alliance (NFFA)

Future Fast

Wetland Mapping Consortium (WMC)

Fittine Past

Improving Wetland Restoration Success Project

Future Past

ct

FUTURE RESTORATION WEBINARS

- October 13th, 3pm eastern :
 - Restoration in Urban & Highly Disturbed Landscapes
 - Tom Ries, President and Founder of Ecosphere Restoration Institute
 - Steven I. Apfelbaum, Principal Ecologist, Chairman, Applied Ecological Services, Inc.
 - Alexander J. Felson, PhD RLA, Assistant Professor, Yale University School of Architecture & School of Forestry and Environmental Studies)
- November 19th, 3pm eastern (tentative date):
 - Novel Ecosystems & Restoration
 - Joy Zedler, Aldo Leopold Chair of Restoration Ecology, University of Wisconsin
 - Marilyn Jordan, Retired Senior Scientist, The Nature Conservancy
- December 15th, 3pm eastern:
 - Wetland Restoration: Contemporary Issues & Lessons Learned
 - Jeanne Christie, Executive Director & Marla Stelk, Policy Analyst, ASWM

FOR FUTURE SCHEDULE & UPDATES, GO TO:

http://aswm.org/aswm/6774-future-webinars-improving-wetlandrestoration-success-project

FUTURE NFFA EVENTS

- Tuesday, October 6 at 3:00 p.m. ET Conference Call
- Tuesday, November 3 at 3:00 p.m ET Webinar
 - Overview of the MAST Tool to assist municipalities, state agencies, utilities and NGOs in developing adaptation projects that address their financial, social and environmental concerns
 - Dr. Samuel Merrill, Senior Practice Leader, GEI Consultants, Inc.

• Tuesday, December 1 at 3:00 p.m. ET – Conference Call

Currently conference calls and webinars are usually held on alternating months on the second Tuesday of the month at 3:00 p.m. eastern, 2:00 central, 1:00 mountain, and 12:00 pacific.

FOR FUTURE SCHEDULE & UPDATES, GO TO:

http://www.aswm.org/watersheds/natural-floodplain-functionalliance/2783-future-webinarsconference-calls-schedule.html

INTERESTED IN RECEIVING CEUS?

Who can get CEUs?

- You must be a participant during the live webinar presentation.
- We are able to track webinar participation by registrants using our GoToWebinar software.
- Documentation will state that you were a participant for X hours of a specific ASWM webinar.

Receiving Documentation

If you need CEUs for your participation in today's webinar, you **must request** documentation from ASWM.

Please note that we will send the documentation to you <u>for you to</u> <u>forward</u> to the accrediting organization.

Please contact Laura Burchill laura@aswm.org (207) 892-3399

Provide:

- Your full name (as registered)
- Webinar date and Title

PRESENTERS

Will Harman, P.G. Stream Mechanics

Matt Daniels, P.E. River Design Group

A "COOKBOOK" APPROACH TO WETLAND RESTORATION WON'T WORK

There are too many variables.

- Ingredients are always different
- Reason for 'cooking' varies
- Recipe isn't always correct
- Inexperienced cooks
- Cooking time varies
- Poor inspection when "cooking"
- Additional ingredients may be needed
- Is it really done?

WE NEED TO **UNDERSTAND THE PLANNING PROCESS AND VARIABLES FROM** SITE TO SITE THAT **MUST BE STUDIED, UNDERSTOOD AND ADDRESSED**

Major Reasons for Failure (examples)

Overarching

- Poorly Defined Outcomes/Performance Criteria
- Lack of Access to Expertise and Training
- Lack of Accountability and Enforcement
- Altered and Changing Landscapes/Climate
- Separation of Professions – The 'Silo' effect

Site-Specific

- Planning issues, i.e., Inadequate Assessment of landscape, hydrology & soils
- Construction issues, i.e., failure to implement design, no adaptive management
- Post construction issues, i.e., poor record keeping, limited follow up activity to address problems

How Do We Improve?

- Better defined goals and performance criteria
- Improve Access to Knowledge and Training
- Require Accountability
- Require Documentation of Credentials
- Develop a Common Taxonomy

- Adopt New Science and Technology into Regulations and Guidance
- Engage Multi-Disciplinary, Integrated Teams
- Regional Data Depositories to Document Reasons for Success and Failure

EACH WETLAND RESTORATION PROJECT IS UNIQUE:

- Consider both historic and current landscape setting
- Analyze how water moves into and out of the site
- Evaluate soils present and identify any onsite drainage
- Focus first on hydrology and soil first, last on plants
- Develop a plan that is achievable for the site
- Develop comprehensive cost estimates
- Ensure plan is followed
- Hire experienced and knowledgeable contractors
- Adapt plan as needed during construction
- Determine if monitoring criteria will measure progress
- Keep good records and share with others

ASWM's White Paper Available to Today's Webinar Participants

- See document to download in Go To Webinar 'handouts' box
- Please Review the White Paper
- Contact us if you have ideas about opportunities to present the findings of the paper and explore ways to improve wetland restoration
- Join us for a Webinar providing an overview of the White Paper on December 15th at 3pm ET
- Forward Your Ideas and Recommendations to jeanne.christie@asw m.org or marla@aswm.org

Stream-Wetland Restoration

IT WILL TAKE US A FEW MOMENTS TO MAKE THE SWITCH \cdots

Determining Functional Lift of Stream/Wetland Restoration Projects Will Harman, PG

Stream Mechanics

Love of Channelization

 From 1820 to 1970, more than 200,000 miles of streams and rivers were channelized to reduce flooding, provide drainage for agriculture, and improve navigation

- (Disconnected Rivers By Ellen Wohl)

Functions Lost from Channelization

- Less Flooding
- Less water and sediment storage on previous floodplain
- Loss of bed form diversity (habitat)
- Increased incision and widening (erosion)
- Loss of fish species and biomass

Darby, S.E. and C.R. Thornes, 1992. Impact of Channelization on the Mimmshall Brook, Hertfordshire, UK. Regulated Rivers 7:193-204.

Hupp, C.R., 1992. Riparian Vegetation Recovery Patterns Following Stream Channelization: A Geomorphic Perspective. Ecology 73:1209-1226.

Kroes, D.E. and C.R. Hupp, 2010. The Effect of Channelization on Floodplain Sediment Deposition and Subsidence Along the Pocomoke River, Maryland. Journal of the American Water Resources Association 46(4):686-699.

Streams and Floodplains

Reverse Slope

Splay

Slough

Floodplain Pools

BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

HYDROLOGY .

5

PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

3 GEOMORPHOLOGY » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

2 HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

Transport of water from the watershed to the channel

Climate

Stream Mechanics

www.stream-mechanics.com

A Function-Based Framework

TAXABLE FOR STREET

Stream / Wetland Complex

Functional Category	Questions to Answer
Hydrology	Does the watershed support a stream/wetland complex? Is the stream connected to the water table?
Hydraulics	Do small flood events inundate the floodplain? Does the floodplain store flood waters?
Geomorphology	Is there bedform diversity (riffle-pool sequence, depth var.)? Is there an appropriate amount of large woody debris? Is there riparian vegetation providing channel and floodplain stability that also supports physicochemical functions.
Physicochemical	Does the reach retain good organic matter (leaves)? Does the temperature regime support biological functions? Is nutrient loading a problem?
Biology	Are macroinvertebrate and fish communities representative of reference condition?

StreamMechanics	Function-Based Parameters for showing Functional Lift
Functional Category	Parameter
Hydrology	Depth to Water Table Flow Duration
Hydraulics	Floodplain Connectivity
Geomorphology	Bed Form Diversity Lateral Stability Riparian / Wetland Vegetation Large Woody Debris (if applicable)
Physicochemical	Organic Matter (Percent Shredder)
Biology	Macroinvertebrate and Fish Communities

Hydrology: Depth to Water Table

Hydraulics: Floodplain Connectivity

Source: Michael Baker Corporation

Elevated Channel

Source: Michael Baker Corporation

Excavated Floodplain

Geomorphology: Bed Form Diversity

Riffle

Geomorphology: Lateral Stability

Geomorphology: Riparian Vegetation

Floodplain / Wetland Vegetation

Geomorphology: Large Woody Debris

Functional Lift Project Example

Source: Michael Baker Corp

Functional Lift

Level and	Darameter	Measurement	Pre-Restoration Condition		Post-Restoration Condition	
Category	Falanicici	Method	Value	Rating	Value	Rating
1 - Hydrology	Groundwater Connection	Depth to Water Table (ft)	3	Not Functioning	<1	Functioning
2 - Hydraulics	Floodplain	Bank Height Ratio	3.0	Not	1.0	Functioning
	Connectivity	Entrenchment Ratio	1.1	Functioning	20	
3 – Geomorphology	Bed Form	Pool-to-pool spacing Ratio	>6.0	Not	4 to 5	Functioning
	Diversity	Pool Depth Ratio	<1.1	Functioning	>1.2	
	Lateral Stability	BEHI/NBS	High/High	Not Functioning	Low/Low	Functioning
	Riparian Vegetation	USFWS SAR	No zones of vegetation represented	Not Functioning	All three zones represented	Functioning

Level and	Parameter	Measurement Method	Pre-Restoration Condition		Post-Restoration Condition	
Category			Value	Rating	Value	Rating
4 - Physicochemical	Water Quality	Temperature	Meets WQ stds. Not rep of ref cond.	Functioning-At- Risk	Meets WQ stds. Meets ref condition	Functioning
		Organic Matter	25% of reference condition		80% of reference condition	
5 – Biology	Fish Communities	Upstream / downstream monitoring	Does not meet upstream reference condition	Not Functioning	Does meet upstream reference condition	Functioning

Thank You

Use of an Ecosystem-based Approach for Stream and Wetland Restoration

Milltown Dam Restoration Site Near Missoula, Montana

RIVER DESIGN GROUP, INC.

Matt Daniels, PE riverdesigngroup.com September 8, 2015

Components of an Ecosystem-based Restoration Plan

- Purpose and Need
- Site Assessment & Limiting Factors
- Restoration Objectives & Design Criteria
- Restoration Strategies & Treatments
- Restoration Alternatives & Prioritization
- Design & Implementation Considerations
- Cost Estimate

KOOTENAI RIVER HABITAT RESTORATION PROJECT MASTER PLAN

А Сонсертии: Flamburt Analysis and Desich Flambwin Devicemental the Kooteen Thee or Inans – Auct 2009

Conceptual Restoration Design Lower Blacktail Creek FINAL REPORT

Property for Manters Well after Safe Lockey *11 Bar 20100vr421 Names by Selected

Property by Num Design Strang. Int. 214 Million (Science)

RIMER DESKON GROUP

na bilwet mi. Minnuna 18840

Restoration Challenges

Restoration Purpose and Need

Project Goals – Examples

- Improve aquatic habitat conditions (i.e., woody debris availability, spawning gravels, pool quality and quantity, off-channel habitat) for native fish.
- Improve floodplain and riparian function by establishing a dynamic, succession driven mosaic of plant communities capable of supporting a wide range of ecological functions.
- Establish sustainable river and floodplain morphology that supports aquatic habitat and vegetation goals within the context of constraints.

Components of an Ecosystem-based Restoration Plan

- Purpose and Need
- Site Assessment & Limiting Factors
- Restoration Objectives & Design Criteria
- Restoration Strategies & Treatments
- Restoration Alternatives & Prioritization
- Design & Implementation Considerations
- Cost Estimate

KOOTENAI RIVER HABITAT RESTORATION PROJECT MASTER PLAN

А Сонсертинс Flanklight Analysis, анд Otsach Flandwinn Developed by the Koopenia Theo or Inano – Auct 2009

Conceptual Restoration Design Lower Blacktail Creek FINAL REPORT

Property for Manhara 1997 2011 Salt Lockey 712 Bar 201004413 Namia, 57 1912515

Property by Num Design Strang. Int. 214 Million (Science)

A DELED

ni Mintura URAD

Limiting Factors and Constraints

- Limiting factors are the conditions affecting ecosystem functions and preventing the desired future condition.
- Limiting factors can be organized into a hierarchy or pyramid to help link observed problems to restoration goals
- Constraints are the limiting factors that we can't change.
- Requires data collection and analysis

Evaluating floodplain connection

Jim Brown Creek
NRCS project
Wetland Reserve Program
Floodplain connection

Evaluating floodplain connection

Data Needs • Bankfull profile

• Lidar

<u>Methods</u>

- Field survey
- Mapping of elevations relative to indicators with GIS or CAD

Results/Conclusions

- Entrenchment 5 feet
- Inset floodplain

Components of an Ecosystem-based Restoration Plan

Project Overview

- Site Assessment & Limiting Factors
- Restoration Objectives & Design Criteria
- Restoration Strategies &
 Treatments
- Restoration Alternatives & Prioritization
- Design & Implementation Considerations
- Cost Estimate

KOOTENAI RIVER HABITAT RESTORATION PROJECT MASTER PLAN

А Сонсертии: Flankligtt Analysis and Otsick Flandwin Devicence by the Kootsian Theo or Inans – Auct 2009

Conceptual Restoration Design Lower Blacktail Creek FINAL REPORT

Propagated Fast Maintena (MERP affit Salt Lockey *11: Bart 20100/0413 Samara, bit 14822110

Prepared by Num Design Strang, Int. 214 Manufacture Strengt

nit Deserver and Deserver PState Sciwel Minners 10847

-

Restoration Objectives and Design Criteria

- Objectives describe how limiting factors will be addressed
- Objectives are quantified with design criteria
- Objectives and design criteria provide the guidance for the development of restoration strategies and treatments

Restoration Objectives and Design Criteria - Examples

Limiting Factor Objective		Design Criteria
Lack of juvenile rearing habitat	Create or enhance off channel habitat	Provide areas that are shallow, have low velocity and cover
Insufficient riparian buffer	Increase width of connected floodplain	Provide 150-foot wide areas on both sides of the channel that that are within one foot of the baseflow water table during the growing season
Fine sediment supply	Address severely eroding banks	Less that 10% of the banks are eroding at rates greater than one foot per year

Quantifying restoration objectives with biological design criteria

East Fork Rock Creek

- Instream flow study
- Below a dam
- Bull trout habitat

Data Needs

- Topography
- Discharge & water surface profiles
- Habitat suitability indices

Methods

- Field survey
- 2D model
- GIS mapping

<u>Results</u>

- Quantity of habitat
- Spatial distribution
- Optimal flow

Components of an Ecosystem-based Restoration Plan

Project Overview

- Site Assessment & Limiting Factors
- Restoration Objectives & Design Criteria
- Restoration Strategies & Treatments
- Restoration Alternatives & Prioritization
- Design & Implementation Considerations
- Cost Estimate

KOOTENAI RIVER HABITAT RESTORATION PROJECT MASTER PLAN

А Сонсертии: Flankligtt Analysis and Otsick Flandwin Devicence by the Kootsian Theo or Inans – Auct 2009

Conceptual Restoration Design Lower Blacktail Creek FINAL REPORT

Property For Manhous 1950 2011 Salt Johns 513 Aug 2012 average 523 Aug 2012 average 523 Aug 2012 average 523 Aug 2012 average 523 Aug 2012 average 524 Aug 2012 average 525 Aug 2

Property by New Design Streep, Inc. 200 Streeping Streeping

toraling as

40

Restoration Strategies & Treatments

- Conservation (easements, fencing, acquisition)
- Flow modification
- Wood or gravel augmentation
- Migration barrier removal (dams and culverts)
- Revegetation (soil amendments and planting)
- Instream and streambank habitat structures
- Wetland enhancement and creation
- Remediation and pollution cleanup
- Channel and floodplain reconstruction

Restoration Strategy	Limiting Factors Addressed	Limitations
Conservation	Land use	Conservation does not directly address most limiting factors; however, conservation may improve riparian conditions in the long term. Success is dependent on selection of sites with high natural recovery potential. May provide opportunities for future restoration.
Revegetation	Altered pool development Bank erosion Lack of habitat diversity Warm water temperatures	Revegetation does not directly address limiting factors related to channel geometry such as channel entrenchment, straightened planform, or floodplain connection. Success is dependent upon routine maintenance and adaptively managing site conditions. Revegetation may improve aquatic habitat conditions in the long term.
Streambank Structures	Altered pool development Bank erosion Shallow, infrequent pools Lack of habitat diversity Warm water temperatures	Streambank structures do not directly address limiting factors related to channel geometry such as channel entrenchment, straightened channel planform, or floodplain connection. Success is dependent upon reach-scale stability and inclusion of vegetation components.

Selecting appropriate strategies and treatments

Blackfoot River

- Recreation site
- Bank erosion

Design Approach

- Survey of reference bank
- Mapping of plant communities relative to streambank position

Treatments

- Planting
- Floodplain roughness
- Bioengineering
- Fencing and browse protection

Selecting appropriate strategies and treatments

Crooked River

- Placer mining
- Steelhead trout habitat
- Extensive berms and ponds
- Disturbed soils fines removed
- Static channel and with low potential for disturbance and natural recovery

Crooked River

- 70 % of historical floodplain not suitable in elevation for riparian vegetation
- Off channel areas not connected

Restoration Treatments

- Channel reconstruction
- Floodplain grading
- Side channels
- Wetland swales
- Alcoves and point bars
- Woody debris instream habitat structures and floodplain roughness elements
- Planting and seeding
- Upland restoration

Components of an Ecosystem-based Restoration Plan

Project Overview

- Site Assessment & Limiting Factors
- Restoration Objectives & Design Criteria
- Restoration Strategies & Treatments
- Restoration Alternatives & Prioritization
- Design & Implementation Considerations
- Cost Estimate

KOOTENAI RIVER HABITAT RESTORATION PROJECT MASTER PLAN

А Сонсертине Flamburtt Анаския, инд Desich Flamburt Developed by the Kootenin Time on Inakis – Auct 2009

Conceptual Restoration Design Lower Blacktail Creek FINAL REPORT

Program Ref Mantena (MDP 2011 Salt Johns 111 Ref 2012244(2) Netro, 67 2012210

Prepared by New Design String, In 216 Design String

A Lower Street

.

Identification of Alternatives

Restoration Strategies	Constraints	Limiting Factors Addressed	Feasibility Considerations	Relative Cost
Conservation				
Revegetation				
Streambank structures				
Floodplain restoration				
Channel reconstruction				

Identification of Alternatives

Restoration Strategies	Constraints	Limiting Factors Addressed	Feasibility Considerations	Relative Cost
Conservation		Land use	Recovery	Low
Revegetation	Entrenchment	Lack of buffer	Browse	Moderate
Streambank structures	Infrastructure	Poor habitat	Stability	Moderate
Floodplain restoration	Houses	Connection	Flooding	High
Channel reconstruction	Floodplain regs	Entrenchment	Sediment	High

Example Site Selection and Prioritization of Projects

Project	Technical Complexity	Social Issues	Relationship to Other Projects	Ecological Uplift	Relative Cost
Site 1					
Site 3					
Site 6					

Example Site Selections and Prioritization of Projects

Project	Technical Complexity	Social Issues	Relationship to Other Projects	Ecological Uplift	Relative Cost
Site 1	Moderate	Moderate	Moderate	Moderate	Moderate
Site 3	High	Moderate	High	High	High
Site 6	Low	Low	Low	Low	Low
Components of an Ecosystem-based Restoration Plan

Project Overview

- Site Assessment & Limiting Factors
- Restoration Objectives & Design Criteria
- Restoration Strategies & Treatments
- Restoration Alternatives & Prioritization
- Design & Implementation Considerations
- Cost Estimate

KOOTENAI RIVER HABITAT RESTORATION PROJECT MASTER PLAN

А Сонсеттике Flanklertt Амасчик, яно Desich Flandowik Developed by the Kootken Theo or Inakis – Alor 2009

Conceptual Restoration Design Lower Blacktail Creek FINAL REPORT

Property for Manhous 1950 2011 Sair Johns 101 Ray 201201412 National Net Delicities

Property by Num Design Design Internal 204 Million Sciences (197

enura 18640

in the second

Design Considerations

 Performance expectations Risk management Data needs Permitting requirements Monitoring and adaptive management

Risk Management

Implementation Considerations

 Construction phasing Access and staging Water management Materials Contracting Oversight

Cost Estimates

- Construction
- Materials
- Design and construction oversight
- Permitting and environmental compliance
- Monitoring
- Maintenance
- Contingency

Are We Improving?

• Technology is your friend

- Education (restoration specific curricula)
- Data collection (LiDAR)
- Analysis (computational power)
- Construction (GPS)
- Adaptive management is happening
 - Restoration industry is maturing
 - Learning from research and from monitoring projects
- Collaboration is key
 - Interdisciplinary design teams
 - Peer review and independent scientific review
 - Specialized construction contractors

Will Harman's Recommendations

Cause of Failure	Recommendation	Selected Measures
1. Credit determination methods generally do not exist for stream/wetland complexes.	Create a third category for mitigation debits and credits called stream/wetland complexes. Apply on debit and credit side.	Focus on groundwater connection, floodplain connectivity, bed form diversity, lateral stability, and riparian vegetation as a minimum.
2. Most credit determination methods are linked to changes in dimension, pattern, and profile.	Link restoration activities to changes in function-based parameters.	Same as above.
3. Projects over- promise success by not assessing restoration potential.	All projects should state the restoration potential as the highest level of restoration that can be achieved based on health of watershed, reach scale assessment and constraints.	Catchment assessment, function-based assessment using parameters above and a statement about the restoration potential. Level 3 (Geomorphology) = Stability Level 4 (Physicochemical) = Water Quality Level 5 = (Biology) = Biology to a reference condition

Matt Daniel's Recommendations

Cause of Failure	Recommendation	Selected Measures
Lack of monitoring and maintenance	Require monitoring and maintenance plans	Monitor projects for at least 5 years. Budget up to 10% of implementation costs for outyear maintenance.
Poor site selection and inability to overcome severe problems	Complete initial feasibility assessments prior to site selection	Collect data and complete analyses to document the limiting factors and constraints. Ensure that goals and objectives are appropriate and realistic. Assess the ability to overcome limiting factors.
Application of inappropriate restoration treatments	Clarify cause and effect pathways. Link treatments to limiting factors and objectives.	Peer review Enlist an interdisciplinary team to ensure that a broad range of issues are contemplated.
Inexperienced or unqualified construction contractor	Contractor selection must be based on more than low bid. Selection must also consider experience and qualifications	Require contractors to submit experience in the form of 5 restoration project examples. Require contractors to submit qualifications by describing components of past restoration work. Require use of GPS to improve implementation quality control, if applicable.
Lack of a project champion	All projects need a leader or dedicated team to see it through from start to finish and beyond.	Project designers need to be involved in all project aspects including planning, design, construction oversight and monitoring.

Will Harman, Stream Mechanics wharman@stream-mechanics.com 919-747-9448

Matt Daniels, River Design Group, Inc. mdaniels@riverdesigngroup.net 406-862-4927

Thank you for your participation!

Construction of the second second

www.aswm.org