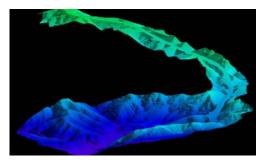


NEEA 2012 Summary and Program Recommendation Wetlands Mapping Consortium April 18, 2012

The National Map

+ National Enhanced Elevation Assessment At a Glance

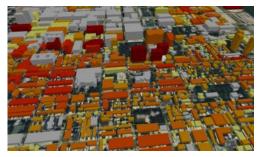
- Sponsored by the National Digital Elevation Program (NDEP) and funded by USGS, NGA, FEMA, NRCS and NOAA to:
 - Document national requirements for improved elevation data from technologies such as LiDAR and IfSAR
 - Estimate the benefits and costs of meeting these requirements
 - Evaluate multiple national enhanced program scenarios
- 602 mission-critical activities that require enhanced elevation data were identified by:
 - 34 Federal agencies
 - 50 states
 - A sampling of local governments, tribes, private and not-for profit organizations
- A national program has the potential to generate \$1.2 billion to \$13 billion in new benefits each year when fully operational



+ Example Business Uses

<u>602 Functional Activities</u> (needs) documented and summarized in 27 Business Uses

Precision Farming


Land Navigation and Safety

Geologic Resources and Hazards Mitigation

Natural Resource Conservation

Infrastructure Management

Flood Risk Mitigation

+ Benefits for Top Business Uses

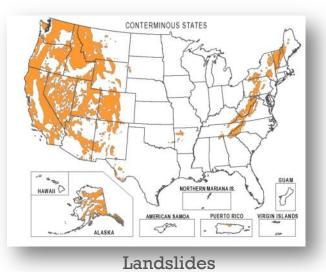
Annual Benefits

Rank		Conservative	Potential
1	Flood Risk Management	\$295M	\$502M
2	Infrastructure and Construction Management	\$206M	\$942M
3	Natural Resources Conservation	\$159M	\$335M
4	Agriculture and Precision Farming	\$122M	\$2,011M
5	Water Supply and Quality	\$85M	\$156M
6	Wildfire Management, Planning and Response	\$76M	\$159M
7	Geologic Resource Assessment and Hazard Mitigation	\$52M	\$1,067M
8	Forest Resources Management	\$44M	\$62M
9	River and Stream Resource Management	\$38M	\$87M
10	Aviation Navigation and Safety	\$35M	\$56M
:			
20	Land Navigation and Safety	\$0.2M	\$7,125M
	Total for all Business Uses (1 – 27)	\$1.2B	\$13B

+ BU #9 – Geologic Resource Assessment and Hazards Mitigation

<u>USGS Mission Critical Requirements:</u> Identify areas, level of activity & risk associated with Earth hazards to reduce losses and increase public safety. <u>Update frequencies</u>: 4-10 years <u>Expected combined benefits</u>: \$31.25M/year Data requirement: Predominantly QL 1

Example applications:


- Identify faults/landslides under thick vegetation
- Enhance infrastructure engineering design
- Estimate size, speed and effects of landslides
- Create loss mitigation strategies
- Provide maps and models to emergency planners

Seismic

+ BU #8 – Agriculture and Precision Farming

J.R. Simplot Company Mission Critical Requirements – QL 3 LiDAR is required for all agricultural land for site-specific application of seed, fertilizer, lime, pesticides and water to optimize farm yields. Also used to reduce farm and pasture runoff that pollutes streams.

- <u>Update Frequencies</u> 6-10 years.
 - <u>Expected benefits</u> \$50M/year in the Red River Valley (parts of ND and MN) for farm drainage-related losses to corn and wheat alone.
 - <u>Potential benefits</u> \$2B/year. If 10% of drainage-related productivity losses were averted with improved elevation data on a national basis.

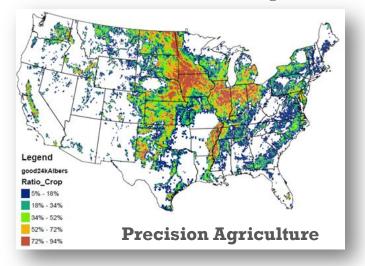
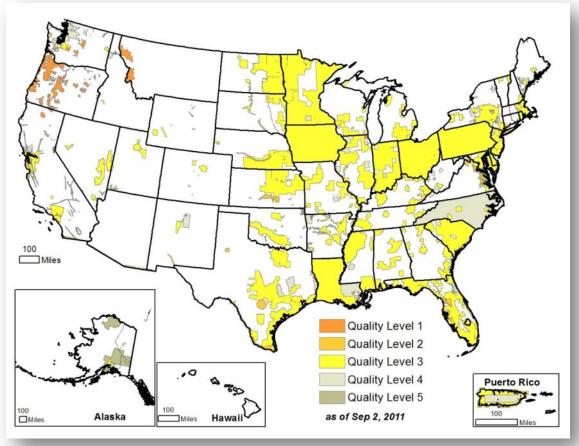


Image from University of Missouri Extension

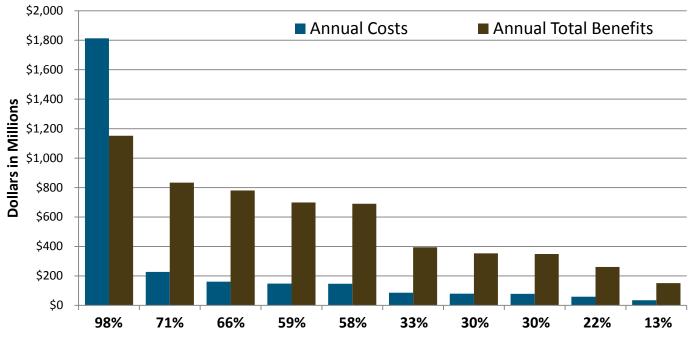

+NEEA Quality Levels

Quality Level	Horizontal Point Spacing (meters)	Vertical Accuracy (centimeters)	Description
1	0.35	9.25	High accuracy and resolution LiDAR example: LiDAR data collected in the Pacific Northwest
2	0.7	9.25	Medium-high accuracy and resolution LiDAR
3	1-2	<18.5	Medium accuracy and resolution LiDAR – analogous to USGS specification v. 13 and most data collected to date
4	5	46-139	Early or lower quality LiDAR and photogrammetric elevations produced from aerotriangulated NAIP imagery
5	5	93-185	Lower accuracy and resolution, primarily from IfSAR

+ National Digital Elevation Program (NDEP) Status of Elevation Data

Map depicts public sources of LiDAR in all states plus IfSAR data in Alaska

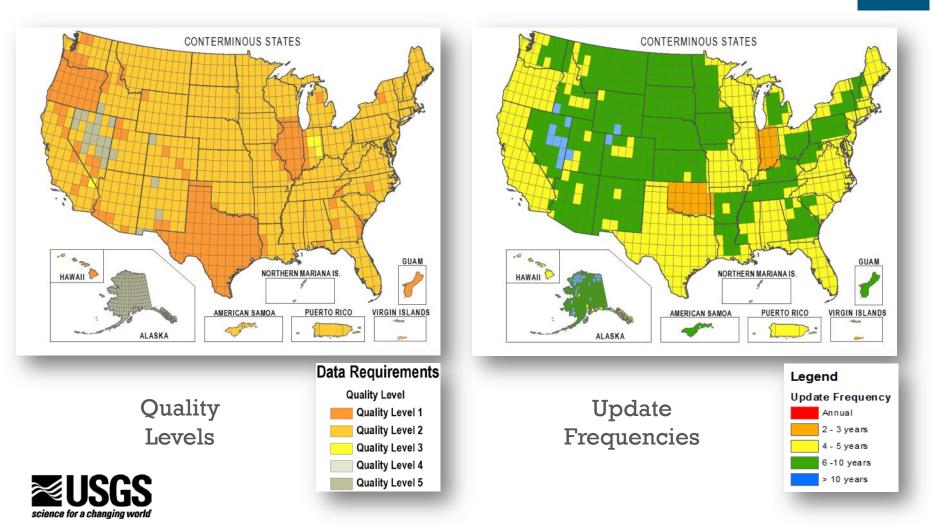
1996 - 2011

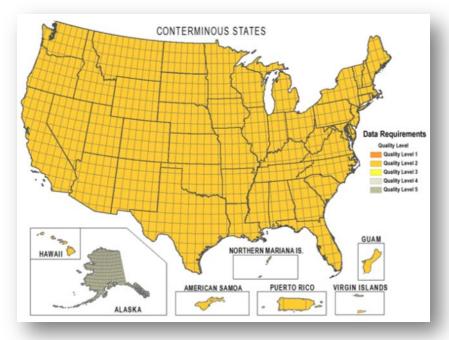

- 28% coverage 49 states
- 15% coverage Alaska
- 30+ year replacement cycle
- Program is efficient less than
 10% overlap of coverage
- Cooperative data projects work
- Data quality variable

Why is this a problem?

- Remaining 72% coverage is 30 or more years old.
- Alaska very poor quality
- Meets 10% of need
- Current and emerging needs require much higher quality data.

I0 Program Scenarios Developed


Needs addressed by data quality and replacement cycle combinations


% = Needs Satisfied by Scenario

+ Scenario: Highest Net Benefits for Combined Federal, State and Nongovernmental Organizations

+Scenario: Uniform QL2 (QL 5 in AK)

8 year acquisition

Avg. Annual Costs: \$146M

Avg. Annual Benefits: \$690M

Avg. Annual Net Benefits: \$544M

B/C Ratio: 4.7:1

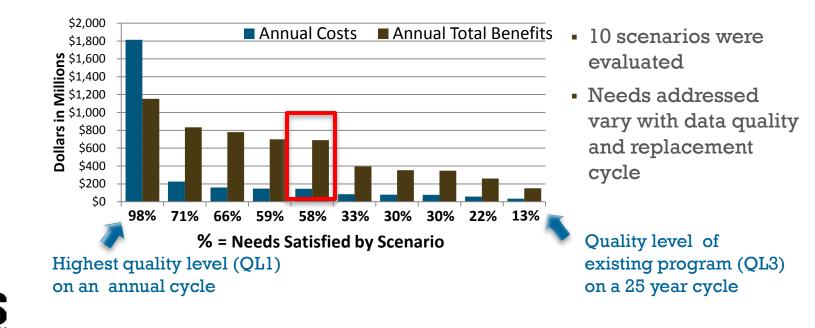
Total Possible Benefits Satisfied: 58%

15 year acquisition Avg. Annual Costs: \$78M

- Avg. Annual Benefits: \$349M
- Avg. Annual Net Benefits: \$271M

B/C Ratio: 4.5

Total Possible Benefits Satisfied: 30%

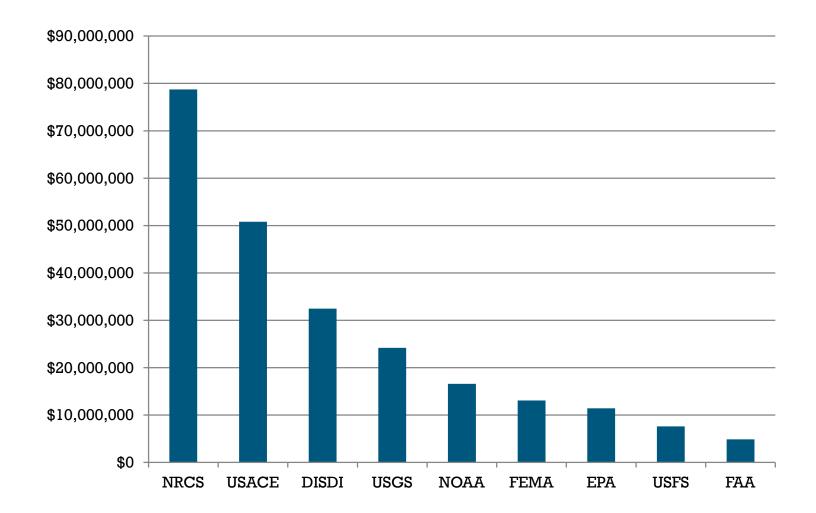

+ Summary of Findings and Conclusions

- Status quo program relatively efficient but meets less than 10% of measured needs.
- All program scenarios provide favorable benefit cost ratios.
- All program scenarios combine multiple requirements and collect data in large regular blocks to achieve improved cost efficiency.
- IT infrastructure needed to manage data for all scenarios.
- No technical barriers to moving ahead
- Major dollar benefits are realized from high quality data.

+ National Program Recommendation

- LiDAR, Quality Level 2 for 49 states, IfSAR, Quality Level 5 in Alaska
- 8 year acquisition
- Average Annual Costs: \$146 M
- Average Annual Benefits: \$690 M (B/C: 4.7:1)
- Total Possible Benefits Satisfied: 58%

+ Recommended Elevation Data Program


QL2 LiDAR* - 8 year acquisition)

Advantages:

- Achieves the majority of benefits
- High benefit-cost ratio and net benefits
- Benefits realized in 8 years instead of 30+ years for status quo
- Meets all lower QL requirements and partially satisfies QL1
- Cost efficiencies achieved through large area acquisition strategy

+ Annual Benefits of Recommended Program Benefits to top 9 agencies

+ Program Development Next Steps

- Communications ongoing with potential partners and other stakeholders
- FGDC review of program recommendation
- Develop governance model for community review (June/July)
 - Flexible process to meet annual requirements of partner agencies
 - Use existing mechanism as the forum for negotiations: National Digital Elevation Program
 - Use lessons learned and consider other successful partnerships: National Agriculture Imagery Program

+ Proposed Funding Strategy Outline Cooperatively Funded Program Executed by USGS

- Coalition of Federal agencies commit funding to a national program (in rank order of benefits): NRCS, USACE, DISDI, USGS, NOAA, USFS, FEMA, EPA, FAA, NGA
- States and other partner agencies will be invited to participate
- Collection priorities will be based on coalition partner agency needs
- Acquisition cycle scales with funding

+ For more information

NEEA Webpage

- Http://nationalmap.gov/3dep/neea.html
- Greg Snyder, NEEA Project Manager
 - gsnyder@usgs.gov

